5 research outputs found

    Restspanningen in stalen UPE 160 profielen

    Get PDF

    Correction of time-of-flight shifted polymeric molecular weight distributions in matrix assisted laser desorption/ionization Fourier transform mass spectrometry

    No full text
    Molecular weight distributions on an external injection matrix-assisted laser desorption/ionization Fourier transform mass spectrometer are subject to time-of-flight distortions as different ion velocities are probed with varied delay times between ionization and trapping (i.e., the trapping time). This phenomenon is used to advantage to reject low-mass matrix ions which would otherwise saturate the trapped ion cell; however, for accurate determination of molecular weight distributions of complex samples like polymeric systems, several mass spectra must be acquired at a series of different trapping times to compensate for this distortion. The spectra acquired should be superimposed (not summed) on the same m/z axis to yield the correct molecular weight distribution as summation of these spectra merely causes further distortions and can cause loss of signal/noise. Distortions due to TOF effects are probed with a calibration compound, poly(ethylene glycol) of peak mass (Mp) ∼1000 Da, as well as the more difficult to ionize polystyrene, which was obtained as a chromatographic molecular weight standard (MW 950). This polystyrene reference material was determined to have a ∼20% error in Mp

    Endgroup analysis of polyethylene-glycol polymers by matrix-assisted laser-desorption ionization fourier-transform ion-cyclotron resonance mass-spectrometry

    No full text
    Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) by external injection of matrix-assisted laser desorbed and ionized (MALDI) polymers offers good possibilities for characterization of low molecular weight homopolymers (MW range up to 10 kDa). The molecular masses of the molecular weight distribution (MWD) components of underivatized and derivatized (dimethyl, dipropyl, dibutyl and diacetyl) polyethylene glycol (PEG) 1000 and 4000 were measured by MALDI-FTICR-MS. These measurements have been performed using a commercial FTICR spectrometer with a home-built external ion source. MALDI of the samples with a 2,5-dihydroxybenzoic acid matrix in a 1000:1 matrix-to-analyte molar ratio produces sodiated molecules in a sufficient yield to trap the ions in the ICR cell. The masses of the molecular weight distribution of PEG components were measured in broad-band mode with a mass accuracy of < 5 ppm in the mass range around 1000 u and within 40 ppm accuracy around 4000 u. From these measurements, the endgroup mass of the polymer was determined by correlation of the measured component mass with the degree of polymerization. The masses of the PEG endgroups have been determined within a deviation of 3-10 millimass units for the PEG1000 derivatives and 10-100 millimass units for the PEG4000 derivatives, thus confirming the identity of the distal parts of the model compounds

    Determination of block length distributions of poly(oxypropylene) and poly(oxyethylene) block copolymers by MALDI-FTICR mass spectrometry

    No full text
    \u3cp\u3eMatrix-assisted laser desorption/ionization (MALDI) was performed on an external ion source Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) to analyze the block length distributions of triblock polymers of poly(oxypropylene) and poly(oxyethylene). The first series of results presented demonstrate that the apparent molecular weight distributions are distorted. This distortion is induced by the flight-time-induced mass discrimination inherent in the experimental technique, the variation of isotopic patterns over the measured mass range, and the overlap of peaks in the spectrum. Subsequently, a method for the treatment of molecular weight distributions measured by MALDI on an external ion source FTICR-MS is developed to yield the actual molecular weight distribution and, from that, the individual block length distributions. For the first time, detailed and accurate molecular weight data were obtained on a Complex sample using this methodology, which independently validates the data provided by the manufacturer. Hie experimentally verified random coupling hypothesis proves the validity of the methodology.\u3c/p\u3
    corecore