18 research outputs found

    PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability

    Get PDF
    The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T&gt;G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C&gt;A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.</p

    Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort

    Get PDF
    © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Michael J. Fox Foundation for Parkinson's Research. Grant Number: ID 15015.02. NIHR Cambridge Biomedical Research Centre. Grant Number: BRC-1215-20014info:eu-repo/semantics/publishedVersio

    Quantitative MRI protocol and decision model for a ‘one stop shop’ early-stage Parkinsonism diagnosis: Study design

    Get PDF
    Differentiating among early-stage parkinsonisms is a challenge in clinical practice. Quantitative MRI can aid the diagnostic process, but studies with singular MRI techniques have had limited success thus far. Our objective is to develop a multi-modal MRI method for this purpose. In this review we describe existing methods and present a dedicated quantitative MRI protocol, a decision model and a study design to validate our approach ahead of a pilot study. We present example imaging data from patients and a healthy control, which resemble related literature

    Generation and characterization of a genetic Parkinson's disease-patient derived iPSC line DJ-1-delP (LCSBi008-A)

    Get PDF
    Here, we describe an induced pluripotent stem cell (iPSC) line that was derived from fibroblasts obtained from a monogenic Parkinson's disease (PD) patient. The disease was caused by a c.634-636delGCC mutation in the PARK7 gene leading to p.158P deletion in the protein DJ-1. iPSCs were generated via electroporation using three episomal plasmids encoding human Oct3/4, Sox2, Klf4, Lin28, L-Myc combined with a short hairpin RNA for p53. The presence of the c.471_473delGCC mutation in exon 7 of PARK7 was confirmed by Sanger sequencing. The iPSCs express pluripotency markers, are capable of in vitro differentiation into the three germ layers and obtain karyotypic integrity

    Dutch normal-pressure hydrocephalus study: The role of cerebrovascular disease

    No full text
    Object. This study was conducted to determine the prevalence of cerebrovascular disease and its risk factors among patients with normal- pressure hydrocephalus (NPH) and to assess the influence of these factors on the outcome of shunt placement. Methods. A cohort of 101 patients with NPH underwent shunt placement and was followed for 1 year. Gait disturbance and dementia were quantified using an NPH scale and handicap was determined using a modified Rankin scale (mRS). Primary outcome measures consisted of the differences between preoperative and last NPH scale and mRS scores. The presence of risk factors such as hypertension, diabetes mellitus, Cardiac disease, peripheral vascular disease, male gender, and advancing age was recorded. Cerebrovascular disease was defined as a history of stroke or a computerized tomography (CT) scan revealing infarcts or moderate-to-severe White matter hypodense lesions. The prevalence of risk factors for cerebrovascular disease was higher in the 45 patients with cerebrovascular disease than the 56 without it. Risk factors did not influence outcome after shunt placement. Intent-to-treat analysis revealed that the mean improvement in the various scales was significantly less for patients with a history of stroke (14 patients), CT Scans revealing infarctions (13) or white matter hypodense lesions (32 patients) than for those without cerebrovascular disease. The proportion of patients who responded to shunt placement was also significantly lower among patients with than those without cerebrovascular disease (p = 0.02). Conclusions. The authors identified a subgroup of patients with NPH and cerebrovascular disease who showed disappointing results after shunt placement. Cerebrovascular disease was an important predictor of poor outcome

    The Dutch Normal-Pressure Hydrocephalus Study. How to select patients for shunting? An analysis of four diagnostic criteria

    No full text
    BACKGROUND. Comparison of the predictive value of four 'diagnostic tests' for the outcome of shunting in patients with normal-pressure hydrocephalus (NPH). METHODS. Ninety-five NPH patients who received shunts were followed for 1 year. Gait disturbance and dementia were quantified by an NPH scale and handicap by a modified Rankin scale. Primary outcome measures were differences between the preoperative and last scores on both the NPH scale and the modified Rankin scale. Clinical and computed tomographic (CT) findings typical of NPH, absence of cerebrovascular disease, and a resistance to outflow of cerebrospinal fluid (CSF) ≄ 18 mmHg/ml/minute were designated as a positive test outcome; clinical and CT findings compatible with NPH, presence of cerebrovascular disease, and an outflow resistance < 18 mmHg/ml/minute as a negative test outcome. RESULTS. For each of the four tests the percentage of patients classified as improved was significantly greater for those with positive than with negative test results. Measurement of CSF outflow resistance was the only significant prognostic factor for the improvement ratio in NPH scale and CT in the modified Rankin scale according to multivariate logistic regression analysis. The accurate predictive value of the combination of typical clinical and CT findings was 0.65, that of the positive test results of outflow resistance, clinical and CT findings was 0.74. CONCLUSION. The best strategy is to shunt NPH patients if their outflow resistance is ≄ 18 mmHg/ml/minute or, when the outflow resistance is lower, if their clinical as well as their CT findings are typical of NPH. Copyright (C) 2000 Elsevier Science Inc

    Quantification of different iron forms in the aceruloplasminemia brain to explore iron-related neurodegeneration

    Get PDF
    Aims: Aceruloplasminemia is an ultra-rare neurodegenerative disorder associated with massive brain iron deposits, of which the molecular composition is unknown. We aimed to quantitatively determine the molecular iron forms in the aceruloplasminemia brain, and to illustrate their influence on iron-sensitive MRI metrics. Methods: The inhomogeneous transverse relaxation rate (R2*) and magnetic susceptibility obtained from 7 T MRI were combined with Electron Paramagnetic Resonance (EPR) and Superconducting Quantum Interference Device (SQUID) magnetometry. The basal ganglia, thalamus, red nucleus, dentate nucleus, superior- and middle temporal gyrus and white matter of a post-mortem aceruloplasminemia brain were studied. MRI, EPR and SQUID results that had been previously obtained from the temporal cortex of healthy controls were included for comparison. Results: The brain iron pool in aceruloplasminemia detected in this study consisted of EPR-detectable Fe3+ ions, magnetic Fe3+ embedded in the core of ferritin and hemosiderin (ferrihydrite-iron), and magnetic Fe3+ embedded in oxidized magnetite/maghemite minerals (maghemite-iron). Ferrihydrite-iron represented above 90% of all iron and was the main driver of iron-sensitive MRI contrast. Although deep gray matter structures were three times richer in ferrihydrite-iron than the temporal cortex, ferrihydrite-iron was already six times more abundant in the temporal cortex of the patient with aceruloplasminemia compared to the healthy situation (162 ”g/g vs. 27 ”g/g), on average. The concentrations of Fe3+ ions and maghemite-iron in the temporal cortex in aceruloplasminemia were within the range of those in the control subjects. Conclusions: Iron-related neurodegeneration in aceruloplasminemia is primarily associated with an increase in ferrihydrite-iron, with ferrihydrite-iron being the major determinant of iron-sensitive MRI contrast.</p

    Quantification of different iron forms in the aceruloplasminemia brain to explore iron-related neurodegeneration

    No full text
    Aims: Aceruloplasminemia is an ultra-rare neurodegenerative disorder associated with massive brain iron deposits, of which the molecular composition is unknown. We aimed to quantitatively determine the molecular iron forms in the aceruloplasminemia brain, and to illustrate their influence on iron-sensitive MRI metrics. Methods: The inhomogeneous transverse relaxation rate (R2*) and magnetic susceptibility obtained from 7 T MRI were combined with Electron Paramagnetic Resonance (EPR) and Superconducting Quantum Interference Device (SQUID) magnetometry. The basal ganglia, thalamus, red nucleus, dentate nucleus, superior- and middle temporal gyrus and white matter of a post-mortem aceruloplasminemia brain were studied. MRI, EPR and SQUID results that had been previously obtained from the temporal cortex of healthy controls were included for comparison. Results: The brain iron pool in aceruloplasminemia detected in this study consisted of EPR-detectable Fe3+ ions, magnetic Fe3+ embedded in the core of ferritin and hemosiderin (ferrihydrite-iron), and magnetic Fe3+ embedded in oxidized magnetite/maghemite minerals (maghemite-iron). Ferrihydrite-iron represented above 90% of all iron and was the main driver of iron-sensitive MRI contrast. Although deep gray matter structures were three times richer in ferrihydrite-iron than the temporal cortex, ferrihydrite-iron was already six times more abundant in the temporal cortex of the patient with aceruloplasminemia compared to the healthy situation (162 ”g/g vs. 27 ”g/g), on average. The concentrations of Fe3+ ions and maghemite-iron in the temporal cortex in aceruloplasminemia were within the range of those in the control subjects. Conclusions: Iron-related neurodegeneration in aceruloplasminemia is primarily associated with an increase in ferrihydrite-iron, with ferrihydrite-iron being the major determinant of iron-sensitive MRI contrast
    corecore