10 research outputs found

    Human Patient-Derived Brain Tumor Models to Recapitulate Ependymoma Tumor Vasculature.

    Get PDF
    Despite in vivo malignancy, ependymoma lacks cell culture models, thus limiting therapy development. Here, we used a tunable three-dimensional (3D) culture system to approximate the ependymoma microenvironment for recapitulating a patient\u27s tumor in vitro. Our data showed that the inclusion of VEGF in serum-free, mixed neural and endothelial cell culture media supported the in vitro growth of all four ependymoma patient samples. The growth was driven by Nestin and Ki67 double-positive cells in a putative cancer stem cell niche, which was manifested as rosette-looking clusters in 2D and spheroids in 3D. The effects of extracellular matrix (ECM) such as collagen or Matrigel superseded that of the media conditions, with Matrigel resulting in the greater enrichment of Nestin-positive cells. When mixed with endothelial cells, the 3D co-culture models developed capillary networks resembling the in vivo ependymoma vasculature. The transcriptomic analysis of two patient cases demonstrated the separation of in vitro cultures by individual patients, with one patient\u27s culture samples closely clustered with the primary tumor tissue. While VEGF was found to be necessary for preserving the transcriptomic features of in vitro cultures, the presence of endothelial cells shifted the gene\u27s expression patterns, especially genes associated with ECM remodeling. The homeobox genes were mostly affected in the 3D in vitro models compared to the primary tumor tissue and between different 3D formats. These findings provide a basis for understanding the ependymoma microenvironment and enabling the further development of patient-derived in vitro ependymoma models for personalized medicine

    Early experience with targeted therapy as a first-line adjuvant treatment for pediatric low-grade glioma.

    Get PDF
    OBJECTIVE: Pediatric low-grade gliomas (pLGGs) frequently exhibit dysregulation of the mitogen-activated protein kinase (MAPK) pathway. Targeted therapies, including mutant BRAF inhibitors (dabrafenib) and MEK inhibitors (trametinib), have shown promise in patients in whom conventional chemotherapy has failed. However, few studies have investigated the use of targeted therapy as a first-line treatment for pLGG. Here, the authors reviewed their institutional experience with using a personalized medicine approach to patients with newly diagnosed pLGGs. METHODS: All pediatric patients at the authors\u27 institution who had been treated with dabrafenib or trametinib for pLGG without first receiving conventional chemotherapy or radiation were retrospectively reviewed. Demographic, clinical, and radiological data were collected. RESULTS: Eight patients underwent targeted therapy as a first-line treatment for pLGG. Five patients had a BRAF alteration (1 with a BRAFV600E mutation, 4 with a KIAA1549:BRAF fusion), and 3 patients had an NF1 mutation. One of the 8 patients was initially treated with dabrafenib, and trametinib was added later. Seven patients were initially treated with trametinib; of these, 2 later transitioned to dual therapy, whereas 5 continued with trametinib monotherapy. Six patients (75%) demonstrated a partial response to therapy during their treatment course, whereas stable disease was identified in the remaining 2 patients (25%). One patient experienced mild disease progression after completing a course of trametinib monotherapy, but ultimately stabilized after a period of close observation. Another patient experienced tumor progression while on dabrafenib, but subsequently responded to dual therapy with dabrafenib and trametinib. The most common adverse reactions to targeted therapy were cutaneous toxicity (100%) and diarrhea (50%). CONCLUSIONS: Targeted therapies have the potential to become a standard treatment option for pLGG due to their favorable toxicity profile and oral route of administration. This case series provides preliminary evidence that targeted therapies can induce an early disease response as a first-line adjuvant treatment; however, large-scale studies are required to assess long-term durability and safety

    Peripheral biomarkers for pediatric brain tumors: current advancements and future challenges

    No full text
    Circulating biomarkers - nucleic acids, proteins, and metabolites - have been used in several adult oncologic processes to affect early detection, measure response to treatment, and offer prognostic information. The identification and validation of biomarkers for pediatric brain tumors, however, has been meager by comparison. Early detection and serial screening of pediatric brain tumors has the potential to improve outcomes by allowing for rapid therapeutic interventions and more targeted therapies. This is particular resonant for pediatric brain tumors where treatment success is heavily dependent on early surgical intervention. This highlights the need for biomarker development in pediatric neuro-oncology. The authors reviewed current circulating biomarker targets in various biofluid reservoirs and discuss the current barriers to biomarker development in pediatric neuro-oncology patients

    3D patient-derived tumor models to recapitulate pediatric brain tumors In Vitro.

    Get PDF
    Brain tumors are the leading cause of cancer-related deaths in children. Tailored therapies need preclinical brain tumor models representing a wide range of molecular subtypes. Here, we adapted a previously established brain tissue-model to fresh patient tumor cells with the goal of establishing3D in vitro culture conditions for each tumor type.Wereported our findings from 11 pediatric tumor cases, consisting of three medulloblastoma (MB) patients, three ependymoma (EPN) patients, one glioblastoma (GBM) patient, and four juvenile pilocytic astrocytoma (Ast) patients. Chemically defined media consisting of a mixture of pro-neural and pro-endothelial cell culture medium was found to support better growth than serum-containing medium for all the tumor cases we tested. 3D scaffold alone was found to support cell heterogeneity and tumor type-dependent spheroid-forming ability; both properties were lost in 2D or gel-only control cultures. Limited in vitro models showed that the number of differentially expressed genes between in vitro vs. primary tissues, are 104 (0.6%) of medulloblastoma, 3,392 (20.2%) of ependymoma, and 576 (3.4%) of astrocytoma, out of total 16,795 protein-coding genes and lincRNAs. Two models derived from a same medulloblastoma patient clustered together with the patient-matched primary tumor tissue; both models were 3D scaffold-only in Neurobasal and EGM 1:1 (v/v) mixture and differed by a 1-mo gap in culture (i.e., 6wk versus 10wk). The genes underlying the in vitrovs. in vivo tissue differences may provide mechanistic insights into the tumor microenvironment. This study is the first step towards establishing a pipeline from patient cells to models to personalized drug testing for brain cancer

    Harms titanium mesh cage fracture

    No full text
    Interbody fusion has become a mainstay of surgical management for lumbar fractures, tumors, spondylosis, spondylolisthesis and deformities. Over the years, it has undergone a number of metamorphoses, as novel instrumentation and approaches have arisen to reduce complications and enhance outcomes. Interbody fusion procedures are common and successful, complications are rare and most often do not involve the interbody device itself. We present here a patient who underwent an anterior L4 corpectomy with Harms cage placement and who later developed a fracture of the lumbar titanium mesh cage (TMC). This report details the presentation and management of this rare complication, as well as discusses the biomechanics underlying this rare instrumentation failure
    corecore