36 research outputs found

    Mg II line profiles of the Mira S Carinae

    Get PDF
    High-dispersion IUE observations obtained to investigate the evolution of the shock structure of the Mira S Carinae (S Car) produced, despite very limited phase coverage, a set of five spectra of the Mg II h and k lines. There is significant emission from both the h and k lines at velocities of -150 km/sec relative to the stellar photosphere. The h-to-k ratio of the Mg II doublet remains below the theoretically predicated values of 2:1 to 1:1, and shows a smooth dependence on the optical phase. Archival studies of other Miras (e.g., R Car) indicate that S Car is not unique in possessing unusual and highly variable Mg II h and k line profiles

    A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    Get PDF
    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for theCubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collectingmagnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose controlstrategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. Weemphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology,citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbitsand beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecrafttrajectories. Mission design parameters such as total v required for long-term station keeping andminimum/maximum/mean spacecraft separation distances are also presented

    The International X-ray Observatory

    Full text link
    The International X-ray Observatory (IXO) is a joint ESA-JAXA-NASA effort to address fundamental and timely questions in astrophysics: What happens close to a black hole? How did supermassive black holes grow? How does large scale structure form? What is the connection between these processes? To address these questions IXO will employ optics with 3 sq m collecting area and 5 arc sec angular resolution - 20 times more collecting area at 1 keV than any previous X-ray observatory. Focal plane instruments will deliver a 100-fold increase in effective area for high-resolution spectroscopy, deep spectral imaging over a wide field of view, unprecedented polarimetric sensitivity, microsecond spectroscopic timing, and high count rate capability. The mission is being planned for launch in 2021 to an L2 orbit, with a five-year lifetime and consumables for 10 years.Comment: 6 pages, 3 figures, for conference "X-ray Astronomy 2009 Present status, multi-wavelength approach and future perspectives

    HST Images of the Eclipsing Pulsar B1957+20

    Full text link
    We have obtained images of the eclipsing pulsar binary PSR~B1957+20 using the Planetary Camera of the Hubble Space Telescope. The high spatial resolution of this instrument has allowed us to separate the pulsar system from a nearby background star which has confounded ground-based observations of this system near optical minimum. Our images limit the temperature of the backside of the companion to T \simlt 2800~K, about a factor of two less than the average temperature of the side of the companion facing the pulsar, and provide a marginal detection of the companion at optical minimum. The magnitude of this detection is consistent with previous work which suggests that the companion nearly fills its Roche lobe and is supported through tidal dissipation.Comment: uuencoded gzip-compressed postscript: 10 pages of text plus 2 postscript figures. This preprint is available in various formats from http://archer.stsci.edu:1024/~fruchter/HST_1957/1957.html or http://electra.stsci.edu:1024/~fruchter/HST_1957/1957.htm

    Black Holes and Vacuum Cleaners: Using Metaphor, Relevance, and Inquiry in Labels for Space Images

    Full text link
    This study extended research on the development of explanatory labels for astronomical images for the non-expert lay public. The research questions addressed how labels with leading questions/metaphors and relevance to everyday life affect comprehension of the intended message for deep space images, the desire to learn more, and the aesthetic appreciation of images. Participants were a convenience sample of 1,921 respondents solicited from a variety of websites and through social media who completed an online survey that used four high-resolution images as stimuli: Sagittarius A*, Solar Flare, Cassiopeia A, and the Pinwheel Galaxy (M101). Participants were randomly assigned initially to 1 of 3 label conditions: the standard label originally written for the image, a label with a leading question containing a metaphor related to the information for the image, or a label that contained a fact about the image relevant to everyday life. Participants were randomly assigned to 1 image and compared all labels for that image. Open-ended items at various points asked participants to pose questions to a hypothetical astronomer. Main findings were that the relevance condition was significantly more likely to increase wanting to learn more; the original label was most likely to increase overall appreciation; and, smart phone users were more likely to want to learn more and report increased levels of appreciation. Results are discussed in terms of the need to examine individual viewer characteristics and goals in creating different labels for different audiences.Comment: 50 pages, 7 tables, 2 figures, accepted by the journal "Psychology of Aesthetics, Creativity, and the Arts

    A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission

    Get PDF
    This document presents a roadmap, including proposed budget and schedule, for maturing the instrumentation needed for an X-ray astrophysics Probe-class mission. The Physics of the Cosmos (PCOS) Program Office was directed to create this roadmap following the December 2012 NASA Astrophysics Implementation Plan (AIP). Definition of this mission is called for in the AIP, with the possibility of selection in 2015 for a start in 2017. The overall mission capabilities and instrument performance requirements were defined in the 2010 Astronomy and Astrophysics Decadal Survey report, New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), in connection with the highly ranked International X-ray Observatory (IXO). In NWNH, recommendations were provided regarding the size of, and instrumentation needed by, the next large X-ray observatory. Specifically, the key instrumental capability would be an X-ray calorimeter spectrometer at the focus of a large mirror with angular resolution of 10 arc seconds (arcsec) or better. If possible, a grating spectrometer should also be incorporated into the instrument complement. In response to these recommendations, four instrumentation technologies are included in this roadmap. Three of these are critical for an X-ray mission designed to address NWNH questions: segmented X-ray mirrors, transition edge sensor calorimeters, and gratings. Two approaches are described for gratings, which represent the least mature technology and thus most in need of a parallel path for risk reduction. Also, while current CCD detectors would likely meet the mission needs for grating spectrum readout, specific improvements are included as an additional approach for achieving the grating system effective area requirement. The technical steps needed for these technologies to attain technology readiness levels (TRL) of 5 and 6 are described, as well as desirable modest risk reduction steps beyond TRL-6. All of the technology development efforts are currently funded through the NASA Physics of the Cosmos (PCOS) Strategic Astrophysics Technology (SAT) program; some through the end of FY13, others though FY14. These technology needs are those identified as critical for a near-term mission and briefly described in the 2012 NASA X-ray Mission Concepts Study. This Technology Development Roadmap (TDR) provides a more complete description of each, updates the status, and describes the steps to mature them. For each technology, a roadmap is presented for attaining TRL-6 by 2020 at the latest, and 2018 for most. The funding required for each technology to attain TRL-5 and TRL-6 is presented and justified through a description of the steps needing completion. The total funding required for these technologies to reach TRL-6 is relatively modest, and is consistent with the planned PCOS SAT funding over the next several years. The approximate annual cost through 2018 is 8M.Thetotalcostforalltechnologiestobematuredis8M. The total cost for all technologies to be matured is 62M (including funding already awarded for FY13 and FY14). This can be contrasted to the $180M recommended by NWNH for technology development for IXO, primarily for the maturation of the mirror technology. The technology described in Section 3 of this document is exclusively that needed for a near-term Probe-class mission, to start in 2017, or for a mission that can be recommended by the next Decadal survey committee for an immediate start. It is important to note that there are other critical X-ray instrumentation technologies under development that are less mature than the ones discussed here, but are essential for a major X-ray mission that might start in the late 2020s. These technologies, described briefly in Section 4, are more appropriately funded through the Astronomy and Physics Research and Analysis (APRA) program

    Temperature and Emission-Measure Profiles Along Long-Lived Solar Coronal Loops Observed with TRACE

    Get PDF
    We report an initial study of temperature and emission measure distributions along four steady loops observed with the Transition Region and Coronal Explorer (TRACE) at the limb of the Sun. The temperature diagnostic is the filter ratio of the extreme-ultraviolet 171-angstrom and 195-angstrom passbands. The emission measure diagnostic is the count rate in the 171-angstrom passband. We find essentially no temperature variation along the loops. We compare the observed loop structure with theoretical isothermal and nonisothermal static loop structure.Comment: 10 pages, 3 postscript figures (LaTeX, uses aaspp4.sty). Accepted by ApJ Letter
    corecore