9 research outputs found

    Vegetation change in the regional surface climate over East Asia due to global warming using BIOME4

    Get PDF
    This study investigates the possible changes in the regional surface climate due to global warming from a MM5 downscaling simulation for the period of 1971-2100. The main focus of this study is to observe the changes in vegetation types over East Asia. BIOME4, an equilibrium terrestrial biosphere model, is utilized to simulate vegetation patterns. Regional projections of this study show the increase of surface air temperature by 5◦C and precipitation by 6% over East Asia in the end of the 21st century. The present study also noticed that the increasing trend of temperature is associated with the increasing trends of the minimum temperature of the coldest month. Therefore, the region of favorable temperature conditions for vegetation growth in lower latitudes seems to extend toward the higher latitude. It leads to a northward shift of vegetation distribution in the lower latitudes besides the area extension. For instance, the trend in which the warm mixed forest and temperate deciduous forest shift northward may be distinguished. At the same time, the area of temperate deciduous forest pervades the area and replaces temperate grassland regions. Of interest, the tropical evergreen forest is expected to appear over southern China in the end of the 21st century. The possible vegetation changes are mainly affected by a temperature increase rather than a precipitation increase

    Characteristics of tropical cyclones over the western North Pacific related to extreme ENSO and a climate regime shift in sub-seasonal forecasting with GloSea5

    No full text
    The characteristics of tropical cyclones (TCs) in sub-seasonal forecasting with the Global Seasonal Forecast System 5 (GloSea5) of the Korea Meteorological Administration (KMA) were assessed for June-September (JJAS) from 1991 to 2010 over the western North Pacific (WNP). The performance of GloSea5 was examined for its ability to reproduce observed TC climatology as well as changes in TC genesis with the El Nino-Southern Oscillation (ENSO) and a 1998/1999 climate regime shift (e.g., frequency, genesis spatial distribution). GloSea5 showed skillful performance in predicting the frequency and genesis spatial distribution of TCs in climatology and both ENSO phases; this performance was best during periods of La Nina. Environmental fields related to TC genesis (e.g., sea surface temperature [SST], vertical wind shear [VWS], 850-hPa wind and relative vorticity) were also reasonably captured, despite some systematic biases in SST, low-level circulation, relative vorticity, and VWS. GloSea5 performed well in terms of characteristic of changes in TC genesis before and after the regime shift. However, there were biases in TC frequency before the regime shift and changes in TC-related environmental fields. Our results imply that GloSea5 with a high predictive skill for TC genesis over the WNP can be used as an operational model for sub-seasonal TC forecasting, although it requires continuous improvements to reduce systematic errors

    Representation of the 2016 Korean Heatwave in the Unified Model Global NWP Forecasts: The Impact of Remotely Forced Model Errors and Atmosphere-Ocean Coupling

    No full text
    This study investigates the effects of atmosphere-ocean coupling for medium-range forecasts by using coupled numerical weather prediction (NWP) experiments based on the unified model (UM) on a case study of the 2016 heatwave over the Korean Peninsula. Atmospheric nudging experiments were carried out to determine the key regions which may have large impacts on the forecasts of the heat wave. The results of the nudging experiments suggest that key forcing from the Mongolia region gives the largest impact to this case by causing a transport of warm air from the northwest part of Korea. Moreover, the Pacific region shows an important role in the global circulation in nudging experiments. Results from the atmosphere-ocean coupled model show no clear benefit for the extreme heat wave temperatures in this case. In addition, more model development seems to be needed to improve the representation of sea surface temperature (SST) in some key areas. Nevertheless, it is confirmed that the atmosphere-ocean coupled simulation produces a better representation of aspects of the large-scale flow such as the blocking high over the Kamchatka Peninsula, the high pressure system in the northwest Pacific and Hadley circulation. The results presented in this study show that atmosphere-ocean coupling can be an important way to improve the deterministic model forecasts as the lead time increases beyond a few days

    Future Changes in the Global and Regional Sea Level Rise and Sea Surface Temperature Based on CMIP6 Models

    No full text
    Estimating future sea level rise (SLR) and sea surface temperature (SST) is essential to implement mitigation and adaptation options within a sustainable development framework. This study estimates regional SLR and SST changes around the Korean peninsula. Two Shared Socioeconomic Pathways (SSP1-2.6 and SSP5-8.5) scenarios and nine Coupled Model Intercomparison Project Phase 6 (CMIP6) model simulations are used to estimate the changes in SLR and SST. At the end of the 21st century, global SLR is expected to be 0.28 m (0.17–0.38 m) and 0.65 m (0.52–0.78 m) for SSP 1–2.6 and SSP5-8.5, respectively. Regional change around the Korean peninsula (0.25 m (0.15–0.35 m; SSP1-2.6) and 0.63 m (0.50–0.76 m; SSP5-8.5)) is similar with global SLR. The discrepancy between global and regional changes is distinct in SST warming rather than SLR. For SSP5-8.5, SST around the Korean peninsula projects is to rise from 0.49 °C to 0.59 °C per decade, which is larger than the global SST trend (0.39 °C per decade). Considering this, the difference of regional SST change is related to the local ocean current change, such as the Kuroshio Current. Additionally, ocean thermal expansion and glacier melting are major contributors to SLR, and the contribution rates of glacier melting increase in higher emission scenarios

    Climate Sensitivity and Feedback of a New Coupled Model (K-ACE) to Idealized CO2 Forcing

    No full text
    Climate sensitivity and feedback processes are important for understanding Earth’s system response to increased CO2 concentration in the atmosphere. Many modelling groups that contribute to Coupled Model Intercomparison Project phase 6 (CMIP6) have reported a larger equilibrium climate sensitivity (ECS) with their models compared to CMIP5 models. This consistent result is also found in the Korea Meteorological Administration Advanced Community Earth System model (K-ACE). Idealized climate simulation is conducted as an entry card for CMIP6 to understand Earth’s system response in new coupled models and compared to CMIP5 models. The ECS in the K-ACE is 4.83 K, which is higher than the range (2.1–4.7 K) of CMIP5 models in sensitivity to CO2 change and higher bound (1.8–5.6 K) of CMIP6 models. The radiative feedback consists of clear-sky and cloud radiative feedback. Clear-sky feedback of K-ACE is similar to CMIP5 models whereas cloud feedback of K-ACE is more positive. The result is attributable for strong positive shortwave cloud radiative effect (CRE) feedback associated with reduced low-level cloud cover at mid latitude in both hemispheres. Despite the cancellations in strong negative long wave CRE feedback with the changes in high-level clouds in the tropics, shortwave CRE has a dominant effect in net CRE. Detailed understanding of cloud feedback and cloud properties needs further study

    Long-Term Warming Trends in Korea and Contribution of Urbanization: An Updated Assessment

    No full text
    This study conducted an updated analysis of the long-term temperature trends over South Korea and reassessed the contribution of the urbanization effect to the local warming trends. Linear trends were analyzed for three different periods over South Korea in order to consider possible inhomogeneity due to changes in the number of available stations: recent 103 years (1912–2014), 61 years (1954–2014), and 42 years (1973–2014). The local temperature has increased by 1.90°C, 1.35°C, and 0.99°C during the three periods, respectively, which are found 1.4–2.6 times larger than the global land mean trends. The countries located in the northern middle and high latitudes exhibit similar warming trends (about 1.5 times stronger than the global mean), suggesting a weak influence of urbanization on the local warming over South Korea. Urbanization contribution is assessed using two methods. First, results from “city minus rural” methods showed that 30–45% of the local warming trends during recent four decades are likely due to the urbanization effect, depending on station classification methods and analysis periods. Results from an “observation minus reanalysis” method using the Twentieth Century Reanalysis (20CR) data sets (v2 and v2c) indicated about 25–30% contribution of the urbanization effect to the local warming trend during the recent six decades. However, the urbanization contribution was estimated as low as 3–11% when considering the century-long period. Our results confirm large uncertainties in the estimation of urbanization contribution when using shorter-term periods and suggest that the urbanization contribution to the century-long warming trends could be much lower.112sciescopu

    Impact of Soil Moisture Data Assimilation on Analysis and Medium-Range Forecasts in an Operational Global Data Assimilation and Prediction System

    No full text
    Accurate initial soil moisture conditions are essential for numerical weather prediction models, because they play a major role in land–atmosphere interactions. This study constructed a soil moisture data assimilation system and evaluated its impacts on the Global Data Assimilation and Prediction System based on the Korea Integrated Model (GDAPS-KIM) to improve its weather forecast skill. Soil moisture data retrieved from the Advanced Scatterometer (ASCAT) onboard the Meteorological Operational Satellite was assimilated into GDAPS-KIM using the ensemble Kalman filter method, and its impacts were evaluated for the 2019 boreal summer period. Our results indicated that the soil moisture data assimilation improved the agreement of the observations with the initial conditions of GDAPS-KIM. This led to a statistically significant improvement in the accuracy of the initial fields. A comparison of a five-day forecast against an ERA5 reanalysis and in situ observations revealed a reduction in the dry and warm biases of GDAPS-KIM over the surface and in the lower- and mid-level atmospheres. The temperature bias correction through the initialization of the soil moisture estimates from the data assimilation system was shown in the five-day weather forecast (root mean squared errors reduction of the temperature at 850 hPa by approximately 5% in East Asia)

    Reversibility of the Hydrological Response in East Asia from CO2-Derived Climate Change Based on CMIP6 Simulation

    No full text
    Understanding the response of the Earth system to CO2 removal (CDR) is crucial because the possibility of irreversibility exists. Therefore, the Carbon Dioxide Removal Model Inter-comparison Project (CDRMIP) for the protocol experiment in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) has been developed. Our analysis focuses on the regional response in the hydrological cycle, especially in East Asia (EA). The peak temperature changes in EA (5.9 K) and the Korean peninsula (KO) (6.1 K) are larger than the global mean surface air temperature (GSAT) response. The precipitation changes are approximately 9.4% (EA) and 23.2% (KO) at the phase change time (130–150 years); however, the largest increase is approximately 16.6% (EA) and 36.5% (KO) in the ramp-down period (150–160 years). In addition, the differences are below 5 mm/day and 1 day for the precipitation intensity indices (Rx1day and Rx5day) and frequency indices (R95 and R99), respectively. Furthermore, the monsoon rainband of the ramp-down period moves northward as the earlier onset with high confidence compared to the ramp-up period; however, it does not move north to the KO region. The results suggest that reducing CO2 moves the rainband southward. However, a detailed interpretation in terms of the mechanism needs to be carried out in further research

    Has Global Warming Contributed to the Largest Number of Typhoons Affecting South Korea in September 2019?

    No full text
    A multimodel analysis indicates that the 2019 September record high number of typhoons affecting South Korea was contributed to mostly by the very strong convection over northwestern India with no discernible anthropogenic contribution. ?2021 American Meteorological Society11Nsciescopu
    corecore