157 research outputs found

    Structure determination of the (1×2) and (1×3) reconstructions of Pt(110) by low-energy electron diffraction

    Get PDF
    The atomic geometry of the (1×2) and (1×3) structures of the Pt(100) surface has been determined from a low-energy electron-diffraction intensity analysis. Both structures are found to be of the missing-row type, consisting of (111) microfacets, and with similar relaxations in the subsurface layers. In both reconstructions the top-layer spacing is contracted by approximately 20% together with a buckling of about 0.17 Å in the third layer and a small lateral shift of about 0.04 Å in the second layer. Further relaxations down to the fourth layer were detectable. The surface relaxations correspond to a variation of interatomic distances, ranging from -7% to +4%, where in general a contraction of approximately 3% for the distances parallel to the surface occurs. The Pendry and Zanazzi-Jona R factors were used in the analysis, resulting in a minimum value of RP=0.36 and RZJ=0.26 for 12 beams at normal incidence for the (1×2) structure, and similar agreement for 19 beams of the (1×3) structure. The (1×3) structure has been reproducibly obtained after heating the crystal in an oxygen atmosphere of 5×10-6 mbar at 1200 K for about 30 min and could be removed by annealing at 1800 K for 45 min after which the (1×2) structure appeared again. Both reconstructed surfaces are clean within the detection limits of the Auger spectrometer. CO adsorption lifts the reconstruction in both structures. After desorption at 500 K the initial structures appear again, indicating that at least one of the reconstructions does not represent the equilibrium structure of the clean surface and may be stabilized by impurities

    Changing shapes in the nanoworld

    Full text link
    What are the mechanisms leading to the shape relaxation of three dimensional crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature, the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet. We show that the energy barrier for this step linearly increases with the size of the crystallite, leading to an exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let

    A contiuum model for low temperature relaxation of crystal steps

    Full text link
    High and low temperature relaxation of crystal steps are described in a unified picture, using a continuum model based on a modified expression of the step free energy. Results are in agreement with experiments and Monte Carlo simulations of step fluctuations and monolayer cluster diffusion and relaxation. In an extended model where mass exchange with neighboring terraces is allowed, step transparency and a low temperature regime for unstable step meandering are found.Comment: Submitted to Phys.Rev.Let

    Detection of multiple respiratory pathogens during primary respiratory infection: nasal swab versus nasopharyngeal aspirate using real-time polymerase chain reaction

    Get PDF
    In this study, we present the multiple detection of respiratory viruses in infants during primary respiratory illness, investigate the sensitivity of nasal swabs and nasopharyngeal aspirates, and assess whether patient characteristics and viral load played a role in the sensitivity. Healthy infants were included at signs of first respiratory tract infection. Paired nasopharyngeal aspirates and nasal swabs were collected. Real-time polymerase chain reaction (PCR) was carried out for 11 respiratory pathogens. Paired nasopharyngeal aspirates and nasal swabs were collected in 98 infants. Rhinovirus (n = 67) and respiratory syncytial virus (n = 39) were the most frequently detected. Co-infection occurred in 48% (n = 45) of the infants. The sensitivity of the nasal swab was lower than the nasopharyngeal aspirate, in particular, for respiratory syncytial virus (51% vs. 100%) and rhinovirus (75% vs. 97%). The sensitivity of the nasal swab was strongly determined by the cycle threshold (CT) value (p < 0.001). The sensitivity of the swab for respiratory syncytial virus, but not rhinovirus, was 100% in children with severe symptoms (score ≥11). It is concluded that, for community-based studies and surveillance purposes, the nasal swab can be used, though the sensitivity is lower than the aspirate, in particular, for the detection of mild cases of respiratory syncytial virus (RSV) infection

    High Burden of Non-Influenza Viruses in Influenza-Like Illness in the Early Weeks of H1N1v Epidemic in France

    Get PDF
    BACKGROUND: Influenza-like illness (ILI) may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens. OBJECTIVES: During the early weeks of the 2009-2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms. METHODS: H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire. RESULTS: From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5%) were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9%) were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%), followed by parainfluenza viruses (24.2%) and adenovirus (5.3%). 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens. CONCLUSION: Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management

    International Analysis of Electronic Health Records of Children and Youth Hospitalized With COVID-19 Infection in 6 Countries

    Get PDF
    Question What are international trends in hospitalizations for children and youth with SARS-CoV-2, and what are the epidemiological and clinical features of these patients? Findings This cohort study of 671 children and youth found discrete surges in hospitalizations with variable trends and timing across countries. Common complications included cardiac arrhythmias and viral pneumonia, and laboratory findings included elevations in markers of inflammation and abnormalities of coagulation; few children and youth were treated with medications directed specifically at SARS-CoV-2. Meaning These findings suggest large-scale informatics-based approaches used to incorporate electronic health record data across health care systems can provide an efficient source of information to monitor disease activity and define epidemiological and clinical features of pediatric patients hospitalized with SARS-CoV-2 infections

    International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality

    Get PDF
    Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach
    • …
    corecore