7 research outputs found

    A Role for Nanoparticles in Treating Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is one of the main causes of disability in children and young adults, as well as a significant concern for elderly individuals. Depending on the severity, TBI can have a long-term impact on the quality of life for survivors of all ages. The primary brain injury can result in severe disability or fatality, and secondary brain damage can increase the complexities in cellular, inflammatory, neurochemical, and metabolic changes in the brain, which can last decades post-injury. Thus, survival from a TBI is often accompanied by lifelong disabilities. Despite the significant morbidity, mortality, and economic loss, there are still no eective treatment options demonstrating an improved outcome in a large multi-center Phase III trial, which can be partially attributed to poor target engagement of delivered therapeutics. Thus, there is a significant unmet need to develop more eective delivery strategies to overcome the biological barriers that would otherwise inhibit transport of materials into the brain to prevent the secondary long-term damage associated with TBI. The complex pathology of TBI involving the blood-brain barrier (BBB) has limited the development of eective therapeutics and diagnostics. Therefore, it is of great importance to develop novel strategies to target the BBB. The leaky BBB caused by a TBI may provide opportunities for therapeutic delivery via nanoparticles (NP). The focus of this review is to provide a survey of NP-based strategies employed in preclinical models of TBI and to provide insights for improved NP based diagnostic or treatment approaches. Both passive and active delivery of various NPs for TBI are discussed. Finally, potential therapeutic targets where improved NP-mediated delivery could increase target engagement are identified with the overall goal of providing insight into open opportunities for NP researchers to begin research in TBI

    A Role for Nanoparticles in Treating Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is one of the main causes of disability in children and young adults, as well as a significant concern for elderly individuals. Depending on the severity, TBI can have a long-term impact on the quality of life for survivors of all ages. The primary brain injury can result in severe disability or fatality, and secondary brain damage can increase the complexities in cellular, inflammatory, neurochemical, and metabolic changes in the brain, which can last decades post-injury. Thus, survival from a TBI is often accompanied by lifelong disabilities. Despite the significant morbidity, mortality, and economic loss, there are still no eective treatment options demonstrating an improved outcome in a large multi-center Phase III trial, which can be partially attributed to poor target engagement of delivered therapeutics. Thus, there is a significant unmet need to develop more eective delivery strategies to overcome the biological barriers that would otherwise inhibit transport of materials into the brain to prevent the secondary long-term damage associated with TBI. The complex pathology of TBI involving the blood-brain barrier (BBB) has limited the development of eective therapeutics and diagnostics. Therefore, it is of great importance to develop novel strategies to target the BBB. The leaky BBB caused by a TBI may provide opportunities for therapeutic delivery via nanoparticles (NP). The focus of this review is to provide a survey of NP-based strategies employed in preclinical models of TBI and to provide insights for improved NP based diagnostic or treatment approaches. Both passive and active delivery of various NPs for TBI are discussed. Finally, potential therapeutic targets where improved NP-mediated delivery could increase target engagement are identified with the overall goal of providing insight into open opportunities for NP researchers to begin research in TBI

    Ultrasmall Mixed Eu−Gd Oxide Nanoparticles for Multimodal Fluorescence and Magnetic Resonance Imaging of Passive Accumulation and Retention in TBI

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBI can have a long-term impact on the quality of life for survivors of all ages. However, there remains no approved treatment that improves outcomes following TBI, which is partially due to poor delivery of therapies into the brain. Therefore, there is a significant unmet need to develop more effective delivery strategies that increase the accumulation and retention of potentially efficacious treatments in the injured brain. Recent work has revealed that nanoparticles (NPs) may offer a promising approach for site-specific delivery; however, a detailed understanding of the specific NP properties that promote brain accumulation and retention are still being developed. Multimodal imaging plays a vital role in the understanding of physicochemical properties that initiate the uptake and accumulation of NPs in the brain at both high spatial (e.g., fluorescence imaging) and temporal (e.g., magnetic resonance imaging, MRI) frequency. However, many NP systems that are currently used in TBI only provide contrast in a single imaging modality limiting the imaging data that can be obtained, and those that offer multimodal imaging capabilities have complicated multistep synthesis methods. Therefore, the goal of this work was to develop an ultrasmall NP with simple fabrication capable of multimodal imaging. Here, we describe the development, characterization, accumulation, and retention of poly(ethylene glycol) (PEG)-coated europium−gadolinium (Eu−Gd) mixed magnetic NPs (MNPs) in a controlled cortical impact mouse model of TBI. We find that these NPs having an ultrasmall core size of 2 nm and a small hydrodynamic size of 13.5 nm can be detected in both fluorescence and MR imaging modalities and rapidly accumulate and are retained in injured brain parenchyma. These NPs should allow for further testing of NP physicochemical properties that promote accumulation and retention in TBI and other disease models

    Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis

    Get PDF
    Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis

    Ultrasmall Mixed Eu−Gd Oxide Nanoparticles for Multimodal Fluorescence and Magnetic Resonance Imaging of Passive Accumulation and Retention in TBI

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBI can have a long-term impact on the quality of life for survivors of all ages. However, there remains no approved treatment that improves outcomes following TBI, which is partially due to poor delivery of therapies into the brain. Therefore, there is a significant unmet need to develop more effective delivery strategies that increase the accumulation and retention of potentially efficacious treatments in the injured brain. Recent work has revealed that nanoparticles (NPs) may offer a promising approach for site-specific delivery; however, a detailed understanding of the specific NP properties that promote brain accumulation and retention are still being developed. Multimodal imaging plays a vital role in the understanding of physicochemical properties that initiate the uptake and accumulation of NPs in the brain at both high spatial (e.g., fluorescence imaging) and temporal (e.g., magnetic resonance imaging, MRI) frequency. However, many NP systems that are currently used in TBI only provide contrast in a single imaging modality limiting the imaging data that can be obtained, and those that offer multimodal imaging capabilities have complicated multistep synthesis methods. Therefore, the goal of this work was to develop an ultrasmall NP with simple fabrication capable of multimodal imaging. Here, we describe the development, characterization, accumulation, and retention of poly(ethylene glycol) (PEG)-coated europium−gadolinium (Eu−Gd) mixed magnetic NPs (MNPs) in a controlled cortical impact mouse model of TBI. We find that these NPs having an ultrasmall core size of 2 nm and a small hydrodynamic size of 13.5 nm can be detected in both fluorescence and MR imaging modalities and rapidly accumulate and are retained in injured brain parenchyma. These NPs should allow for further testing of NP physicochemical properties that promote accumulation and retention in TBI and other disease models
    corecore