31 research outputs found

    Results and prospects on registration of reflected Cherenkov light of EAS from cosmic particles above 10^{15} eV

    Full text link
    We give an overview of the SPHERE experiment based on detection of reflected Vavilov-Cherenkov radiation (Cherenkov light) from extensive air showers in the energy region E>10^{15} eV. A brief history of the reflected Cherenkov light technique is given; the observations carried out with the SPHERE-2 detector are summarized; the methods of the experimental datasample analysis are described. The first results on the primary cosmic ray all-nuclei energy spectrum and mass composition are presented. Finally, the prospects of the SPHERE experiment and the reflected Cherenkov light technique are given.Comment: 4 pages, 3 figures, Proc. PANIC-201

    TAIGA -- an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy

    Full text link
    The physical motivations, present status, main results in study of cosmic rays and in the field of gamma-ray astronomy as well future plans of the TAIGA-1 (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy and astroparticle physics at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. The pilot TAIGA-1 complex is located in the Tunka valley, ~50 km west from the southern tip of the lake Baikal.Comment: Submission to SciPost Phys. Proc., 10 pages, 2 figure

    Primary Cosmic Rays Energy Spectrum and Mean Mass Composition by the Data of the TAIGA Astrophysical Complex

    Full text link
    The corrected dependence of the mean depth of the EAS maximum XmaxX_{max} on the energy was obtained from the data of the Tunka-133 array for 7 years and the TAIGA-HiSCORE array for 2 year. The parameter lnA\langle\ln A\rangle, characterizing the mean mass compositon was derived from these results. The differential energy spectrum of primary cosmic rays in the energy range of 210142\cdot 10^{14} - 210162\cdot 10^{16}\,eV was reconstructed using the new parameter Q100Q_{100} the Cherenkov light flux at the core distance 100 m.}Comment: 6 pages, 3 figures, Submitted to SciPost Phys.Pro
    corecore