127 research outputs found

    Continuous gravity recording with Scintrex CG-3M meters: a promising tool for monitoring active zones

    Get PDF
    International audienceWe acquired continuous series of microgravity measurements using several Scintrex CG-3M gravity meters for several weeks in 1997. The meters with 1 mGal resolution were installed side by side in a stable reference station at the ORSTOM research centre to perform identical data acquisition. We present and compare the instrumental responses obtained for the various gravity meters (measurement series of gravity field, standard deviation, internal temperature, tilts) and analyse their correlation with simultaneous recordings of meteorological parameters. The data have been processed in order to (1) establish the mid-to long-term relative stability and the accuracy of the instruments, (2) estimate the contribution of instrumental effects to gravity data measurements and (3) quantify the amplitude of the time variations of the gravity field that might be detected with such instruments. This study emphasizes the sensitivity of some instrumental responses of the Scintrex CG-3M gravity meters (such as internal temperature or tilt) to local atmospheric-pressure variations. This sensitivity can lead to non-negligible perturbations of the gravity measurements through automatic corrections applied in real-time mode by the integrated software. We show that most of these instrumental artefacts can be easily removed in data post-processing by using simultaneous atmospheric-pressure data. After removal of an accurate Earth tide model, the instrumental drift and the instrumental effects, the temporal series are compared by computing differential signals. These residual signals obtained over a period of several weeks exhibit the following characteristics: (1) the gravity residuals have a maximum amplitude ranging from 5 to 10 mGal and from 10 to 15 μGal for filtered and unfiltered data, respectively; and (2) the standard error, tilts and internal temperature measurements of the various gravity meters are very consistent; their respective residual amplitudes are ±2 mGal, ±3 arcsec and ±0.05 mK. In order to calibrate the gravity meters precisely in the measurement range used in this study, we have measured a calibration line established in the framework of the fourth intercomparison of absolute and relative gravity meters. This calibration was achieved with an accuracy of 5 μGal. This result is consistent with other field tests already performed with such gravity meters. In addition, we also checked the accuracy of the tilt sensors by increasing the electronic read-out by a factor of 10. The tilt response of the whole gravity meter to a small induced inclinometric variation indicates that the precision of the tilt measurements is about a few tenths of an arc second. This study reveals that temporal variations of the gravity field could potentially be detected in the field with an accuracy of about 5–15 mGal by permanent networks of Scintrex CG-3M gravity meters set up a few kilometres apart. This result is of particular interest in field surveys of temporal gravity changes related to some environmental or geodynamical processes, where the expected gravity variations are greater than a few tens of mGal. In particular, in volcanological applications, the continuous monitoring of active volcanoes with such permanent networks of gravity meters co-located with subcentimetre-accuracy GPS receivers should be very helpful to understand internal magmatic processes better and to detect possible gravity and inclinometric signals occurring during pre-eruptive phases. In this field, continuous microgravity recordings associated with classical reiteration networks will probably improve hazard mitigation in the near futur

    Inflation of the Aira Caldera (Japan) detected over Kokubu urban area using SAR interferometry ERS data

    Get PDF
    International audienceNine ERS-1 and ERS-2 descending orbit data acquired over Aira Caldera between June 1995 and November 1998 were used to create 36 differential interferograms. Although the interferograms exhibit a relatively low level of coherence, even for couples sampling short time intervals (6 months), Synthetique Aperture Radar (SAR) observations reveal a distinct range change pattern over Kokubu urban area whose amplitude increases with the time separation between SAR images. The analysis of the ground deformation time series relative to the earliest ERS images showed a maximum uplift of about 20 mm between the north and the south of the urban area during the period covered by our satellite observations. Taking the reduced surface of the coherent area into account, we performed a simple modeling of the deformation field assuming an inflating spherical source within an elastic half-space medium located beneath the centre of the Aira Caldera. This simple model predicts a maximum volume increase of 20–30×106 m3 between 1995 and 1998, which would produce an inflation of about 70 mm at the centre of the Aira Caldera and 40 mm in the Kokubu south urban area. These results are in good agreement with other geophysical observations carried out on the Aira caldera during this period. Despite the limited spatial extent of the coherent areas around the Aira Caldera, this study shows that DinSAR method using data collected in C band can be successfully used to detect subtle ground displacement changes of the volcanic complex and thus provides complementary information to ground-based geodetic monitoring of dynamic processes of the Aira Caldera and Sakurajima volcano
    • …
    corecore