78 research outputs found

    Impact of monopolar radiofrequency energy on subchondral bone viability

    Get PDF
    The purpose of this study was to analyze the impact of monopolar radiofrequency energy treatment on subchondral bone viability. The femoral grooves of six chinchilla bastard rabbits were exposed bilaterally to monopolar radiofrequency energy for 2, 4 and 8 s, creating a total of 36 defects. An intravital fluorescence bone-labeling technique characterized the process of subchondral bone mineralization within the 3 months following exposure to radiofrequency energy and was analyzed by widefield epifluorescence optical sectioning microscopy using an ApoTome. After 2 s of radiofrequency energy exposure, regular fluorescence staining of the subchondral bone was evident in all samples when compared to untreated areas. The depth of osteonecrosis after 4 and 8 s of radiofrequency energy treatment averaged 126 and 942 µm at 22 days (P < .05; P < .01). The 4 s treatment group showed no osteonecrosis after 44 days whereas the depth of osteonecrosis extended from 519 µm at 44 days (P < .01), to 281 µm at 66 days (P < .01) and to 133 µm at 88 days (P < .05) after 8 s of radiofrequency energy application. Though radiofrequency energy may induce transient osteonecrosis in the superficial zone of the subchondral bone, the results of this study suggest that post-arthroscopic osteonecrosis appears to be of only modest risk given the current clinical application in humans

    Minimally invasive total knee replacement : techniques and results

    Get PDF
    In this review, we outlined the definition of minimally invasive surgery (MIS) in total knee replacement (TKR) and described the different surgical approaches reported in the literature. Afterwards we went through the most recent studies assessing MIS TKR. Next, we searched for potential limitations of MIS knee replacement and tried to answer the following questions: Are there selective criteria and specific patient selection for MIS knee surgery? If there are, then what are they? After all, a discussion and conclusion completed this article. There is certainly room for MIS or at least less invasive surgery (LIS) for appropriate selected patients. Nonetheless, there are differences between approaches. Mini medial parapatellar is easy to master, quick to perform and potentially extendable, whereas mini subvastus and mini midvastus are trickier and require more caution related to risk of hematoma and VMO nerve damage. Current evidence on the safety and efficacy of mini-incision surgery for TKR does not appear fully adequate for the procedure to be used without special arrangements for consent and for audit or continuing research. There is an argument that a sudden jump from standard TKR to MIS TKR, especially without computer assistance such as navigation, patient specific instrumentation (PSI) or robotic, may breach a surgeon's duty of care toward patients because it exposes patients to unnecessary risks. As a final point, more evidence is required on the long-term safety and efficacy of this procedure which will give objective shed light on real benefits of MIS TKR

    Arthroscopic Restoration of Terminal Elbow Extension in High-Level Athletes

    No full text
    corecore