4 research outputs found

    Validation of ERA5-Land temperature and relative humidity on four Peruvian glaciers using on-glacier observations

    Get PDF
    Weather and climate conditions drive the evolution of tropical glaciers which play an important role as water reservoirs for Peruvian inhabitants in the arid coast and semi-arid Andean region. The scarcity of long-term high-quality observations over Peruvian glaciers has motivated the extensive use of reanalysis data to describe the climatic evolution of these glaciers. However, the representativeness and uncertainties of these reanalysis products over these glaciers are still poorly constrained. This study evaluates the ability of the ERA5-Land reanalysis (ERA5L) to reproduce hourly and monthly 2 m air temperature and relative humidity (T2m and Rh2m, respectively) over several Peruvian glaciers. We compared the ERA5L with data from four on-glacier automatic weather stations (AWS), whose hourly time series were completed with nearby stations, for the period January 2017 to December 2019. Results indicates a better performance of the reanalysis for T2m (r >0.80) than for Rh2m (similar to 0.4<

    Dry season circulation-type classification applied to precipitation and temperature in the Peruvian Andes

    Get PDF
    We present the first systematic classification of circulation regimes that characterize the Tropical Andes during the dry season (May–August). We apply the hierarchical k-means clustering method to ERA-Interim reanalysis data of daily mean geopotential height at 500- and 200-hPa levels for the period 1981–2015. Specifically, by combining the variability in intensity and location of geopotential anomalies we identify 12 circulation types (CTs). We then establish the relationship between the CTs and surface conditions in the Peruvian Andes (PA) analysing high-resolution gridded datasets of daily mean temperature and rainfall. Our results indicate that intense precipitations and low minimum temperatures are often associated with an Upper Tropospheric Trough (UTT) centred at subtropical latitudes (~30°S) and between 80° and 70°W of longitude. Moreover, drier and warmer conditions across the entire PA region are largely associated with three anticyclonic CTs. Strong negative anomalies in daily maximum (minimum) temperatures can be related to the effect of day (night) cloudiness in the radiative balance, but also to subtropical cold air advections favoured by the UTT. While CTs featuring warmer (colder) conditions have become more (less) frequent in the last decades of the record, there is no systematic link between positive or negative trends in occurrence and the wetter and drier character of the CTs. The annual frequencies of 10 CTs are significantly correlated with El Niño-Southern Oscillation, with warmer and drier (cooler and wetter) CTs generally preceded by an El Niño (La Niña) in the previous wet season

    Characteristics of Precipitating Storms in Glacierized Tropical Andean Cordilleras of Peru and Bolivia

    No full text
    Precipitation variability in tropical high mountains is a fundamental yet poorly understood factor influencing local climatic expression and a variety of environmental processes, including glacier behavior and water resources. Precipitation type, diurnality, frequency, and amount influence hydrological runoff, surface albedo, and soil moisture, whereas cloud cover associated with precipitation events reduces solar irradiance at the surface. Considerable uncertainty remains in the multiscale atmospheric processes influencing precipitation patterns and their associated regional variability in the tropical Andes—particularly related to precipitation phase, timing, and vertical structure. Using data from a variety of sources—including new citizen science precipitation stations; new high-elevation comprehensive precipitation monitoring stations at Chacaltaya, Bolivia, and the Quelccaya Ice Cap, Peru; and a vertically pointing Micro Rain Radar—this article synthesizes findings from interdisciplinary research activities in the Cordillera Real of Bolivia and the Cordillera Vilcanota of Peru related to the following two research questions: (1) How do the temporal patterns, moisture source regions, and El Niño-Southern Oscillation relationships with precipitation occurrence vary? (2) What is the vertical structure (e.g., reflectivity, Doppler velocity, melting layer heights) of tropical Andean precipitation and how does it evolve temporally? Results indicate that much of the heavy precipitation occurs at night, is stratiform rather than convective in structure, and is associated with Amazonian moisture influx from the north and northwest. Improving scientific understanding of tropical Andean precipitation is of considerable importance to assessing climate variability and change, glacier behavior, hydrology, agriculture, ecosystems, and paleoclimatic reconstructions

    Annals, Volume 107 Index

    No full text
    corecore