333 research outputs found
Materials selection in a critical raw materials perspective
Critical Raw Materials (CRMs) are those raw materials that are economically and strategically important for the European economy but have a high-risk associated with their supply. Used in environmental technologies, consumer electronics, health, steel-making, defence, space exploration, and aviation, these materials are not only 'critical' for key industry sectors and future applications, but also for the sustainable functioning of the European economy. In this scenario, 'mitigating actions' need to be developed to reduce criticalities linked to the use of those raw materials. Recycling and substitution, when possible, are strategic solutions but a more efficient use of such CRMs in design, obtained by a correct alloy selection, is become nowadays mandatory.A method for metallic alloys selection in a CRMs perspective, based on the definition of the alloy critical index, is described. The proposed method allows selecting the alloy for the current application that minimizes its criticality associated to CRMs. The method is illustrated with examples. Keywords: Mechanical design, Materials selection, Critical raw material, Metallic materia
Design for recycling in a critical raw materials perspective
The European Union (EU) identified a number of raw materials that are strategic for its economy but suffer at the same time from a high supply risk. Such critical raw materials (CRMs) are used in a wide range of commercial and governmental applications: green technology, telecommunications, space exploration, aerial imaging, aviation, medical devices, micro-electronics, transportation, defense, and other high-technology products and services. As a result, the industry, the environment, and our quality and modern way of life are reliant on the access and use of them. In this scenario, recycling may be a strategic mitigating action aimed at reducing the critical raw materials supply risks. In this work, a design strategy is proposed for alloys selection that minimizes the number of CRMs with the lowest end-of-life recycling input rate. The method is illustrated with an example
Alloy Substitution in a Critical Raw Materials Perspective: A systematic approach
Since many years, the European Community has been monitoring some raw materials because of their high importance to the European Union economy and their high supply risk. Such raw materials, classified as critical, form a strong industrial base, producing a lot of goods and applications used in everyday life and modern technologies. Many critical raw materials are used to produce alloys and their high supply risk may constitute a serious problem for the future world economy and technological progress. Mitigating actions are therefore needed such as recycling, material efficiency improvements and, when possible, material substitution. In the present work, a systematic approach for alloy substitution in a critical raw materials perspective is developed. The method is illustrated with an example
a numerical and experimental analysis of inconel 625 electron beam welding thermal aspects
Abstract Inconel 625, a nickel based superalloy, finds application in many fields. It is known to have a good weldability and it is often used in the as-welded conditions, heat treatments could be necessary to relief stresses. Numerous variables are known to affect the residual stresses field: welding process, joined geometry and clamping conditions. Since experimental measurements based on X-ray diffraction are not straightforward, expensive experimental work could be substituted by numerical simulation. Before performing an elastoplastic simulation, thermal analysis results are needed, first. This paper focus on the thermal analysis procedure. The analysis has been validated by means of macrographs and with thermocouples data. The heat source was successfully modelled using a superimposition of a spherical and a conical shape heat source with Gaussian power density distribution in order to reproduce the nail shape of the fusion zone. Heat source parameters were chosen so that the model would match with experimentally determined weld pool shape and temperatures. Preliminary results of the metallurgical analysis are also presented
A Contribution to New Material Standards for Ductile Irons and Austempered Ductile Irons
Some results of materials characterization activities, dedicated to classical and notch mechanics fatigue and elastoplastic properties, have already been published for some Ferritic–Pearlitic Ductile Iron, including the patented heat treated Isothermed (IDI) and Austempered Ductile Iron (ADI) grades. Others have not yet been published. The possible use of all of these results in new standards is discussed in this paper. It is proposed that new standards should provide a criterion that is able to measure the process quality that represents more accurately the actual market needs and manufacturing capabilities. Classification of grades, considered by existing standards, is based on minimum properties for strength and ductility parameters that are separately evaluated. A different approach that is based on a quality index, which considers strength and ductility all in one, is proposed. However, this new proposed approach may not be sufficient to provide a satisfactory classification for the ADIs. This is because their fracture mechanical behavior and machinability can be correlated with their austenite stability. It could also be insufficient for the classification of the recent High Silicon Solid Solution Strengthened Ductile Irons that exhibit a decreasing ultimate tensile strength/proof stress ratio with increasing Si. For construction steels, fracture mechanics properties are sometimes believed to be related to the Charpy impact energy. This paper introduces an innovative practical and inexpensive data analysis, performed on the tensile test curve, which appears to be a potential estimator of fracture mechanical properties, at least for ADIs, where said properties could be correlated with the austenite stability
Alloy Substitution in a Critical Raw Materials Perspective
Since many years, the European Community has been monitoring some raw materials because of their high importance to the European Union economy and their high supply risk. Such raw materials, classified as critical, form a strong industrial base, producing a lot of goods and applications used in everyday life and modern technologies. Many critical raw materials are used to produce alloys and their high supply risk may constitute a serious problem for the future world economy and technological progress. Mitigating actions are therefore needed such as recycling, material efficiency improvements and, when possible, material substitution. In the present work, a systematic approach for alloy substitution in a critical raw materials perspective is developed. The method is illustrated with an example
High carbon steel/Inconel 718 bimetallic parts produced via Fused Filament Fabrication and Sintering
The possibility of producing high carbon steel/Inconel 718 bimetallic parts via Fused Filament Fabrication and Sintering is explored. Compatibility of the two alloys with particular attention to elements interdiffusion through the interface as well as the effect of the deposition strategy were analyzed. Microstructural features, relative density and parts shrinkage were investigated, as well. Although first-tentative process parameters values were not sufficient to reach an acceptable material densification, a good bonding between Inconel 718 and carbon steel was observed, suggesting the potential to obtain sound bimetallic parts with a great range of material properties. Due to a difference in densification kinetics, sintering temperature was revealed to be the most critical process parameter to optimize to minimize porosity
corrosion resistance of uns s31803 stainless steel welded joints
The corrosion resistance of duplex stainless steel welded joints is affected by different parameters such as filler metal chemical composition, heat input, shielding gas composition and post welding heat treatment temperature. In most cases such parameters interact with each other so that it is very difficult to foresee their effect on corrosion resistance of welded joints without specific experimental tests. In this work the best combination of shielding gas composition and post welding heat treatment temperature that guarantees the corrosion resistance of the joint according to ASTM A932, method C, was found. Two shielding gases were tested during welding, Ar (100%) and a mixture of Ar (87%), He (10%) and N (3%), while the solution temperatures were 1050 °C and 1070 °C. It was found that only the samples welded with the mixture of Ar (87%), He (10%), N (3%) as shielding gas and solution heat treated at 1070 °C passed the corrosion test completely.</p
Numerical modelling of residual stress redistribution induced by TIG-dressing: TIG-dressing numerical modelling
TIG-dressing is a technique used to improve the fatigue strength of welded joints by a remelting of the weld toe region that promotes both a smoother transition between the plate and the weld crown and a residual stress redistribution. These effects are very hard to be quantified by numerical simulation since a highly coupled thermo-fluid-mechanical analysis is required. However, if the final weld toe geometry is supposed to be known or a-posteriori measured, a simplified numerical method can be used to simulate the residual tress redistribution that uses the activation-deactivation function of elements. This technique is applied to a real steel weldment and results, in terms of phases proportions and residual stress redistribution, were found in good agreement both with data coming from metallurgical analysis and the improved fatigue strength observed on welded joints after the TIG-dressing operation
Evaluation HPDC Lubricant Spraying for Improved Cooling and Die Protection
This study tries to find out a better cooling and temperature homogenization as well as better die protection on high-pressure die-casting (HPDC) spray lubrication. Test procedures have been set up to study the Leidenfrost point (LFP), contact angle (CA), film thickness and protection from die soldering of lubricants typically applied into the die surfaces during HPDC process. Five different lubricants have been studied as well as the influence in different controllable process parameters (type of die material, oxidation of the surface, temperature, roughness, droplet diameter, water hardness and lubricant concentration). The increase of the LFP, avoiding film boiling regime, and a reduced CA, improve the cooling and film ability of die surface during spraying. The best chemistry exhibits high LFP, shows an increased thickness of the formed film and is more effective preventing the sticking of the aluminum part to the die surface. Thermogravimetric analysis shows better thermal properties for lubricants with anti-sticking performance. The study performed and the test protocols set up result in a better insight of the involved phenomena and allow selecting the most favorable operating window for HPDC lubrication
- …