150 research outputs found

    The Third International Synchrotron Radiation Circular Dichroism Spectroscopy Meeting

    Get PDF
    The International Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy Meeting was held at the Physikzentrum, Bad Honnef, Germany on May 17–20, 2015, as the 590th WE-Heraeus-Seminar. It was the third in the series of SRCD Workshops, following the first one held at the Daresbury Synchrotron (UK) in 2001, and the second at the Beijing Synchrotron Radiation Facility (BSRF) and the Institute of High Energy Physics (IHEP) in 2009. SRCD2015 was organized by Dr. Jochen Bürck, Prof. Anne Ulrich, and Dr. Dirk Windisch (all of Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Germany) and Prof. Bonnie Ann Wallace (Birkbeck College, University of London, UK). It was aimed at both synchrotron CD beamline scientists and scientific users of the beamlines, and included participants from 14 countries. For the first time, representatives of all operational SRCD beamlines worldwide were present at the same meeting, and scientists developing two new SRCD beamlines also participated

    AnglerFish: a webserver for defining the geometry of α-Helices in membrane proteins

    Get PDF
    Summary: Integral membrane proteins that form helical pores and bundles constitute major drug targets, and many of their structures have been defined by crystallography and cryo-electron microscopy. The gating of channels and ligand binding of transporters generally involves changes in orientation of one or more the constituent helices in the structures. At present there is no standard easily- accessible means for defining the orientation of a helix in a membrane protein structure. AnglerFish is a web-based tool for parameterising the angles of transmembrane helices based on PDB coordinates, with the helical orientations defined by the angles “tilt” and “swing”. AnglerFish is particularly useful for defining changes in structure between different states, including both symmetric and asymmetric transitions, and can be used to quantitate differences between related structures or different subunits within the same structure

    Membrane interactions of S100A12 (Calgranulin C)

    Get PDF
    S100A12 (Calgranulin C) is a small acidic calcium-binding peripheral membrane protein with two EF-hand structural motifs. It is expressed in macrophages and lymphocytes and highly up-regulated in several human inflammatory diseases. In pigs, S100A12 is abundant in the cytosol of granulocytes, where it is believed to be involved in signal modulation of inflammatory process. In this study, we investigated the interaction of the porcine S100A12 with phospholipid bilayers and the effect that ions (Ca2+, Zn2+ or both together) have in modifying protein-lipid interactions. More specifically, we intended to address issues such as: (1) is the protein-membrane interaction modulated by the presence of ions? (2) is the protein overall structure affected by the presence of the ions and membrane models simultaneously? (3) what are the specific conformational changes taking place when ions and membranes are both present? (4) does the protein have any kind of molecular preferences for a specific lipid component? To provide insight into membrane interactions and answer those questions, synchrotron radiation circular dichroism spectroscopy, fluorescence spectroscopy, and surface plasmon resonance were used. The use of these combined techniques demonstrated that this protein was capable of interacting both with lipids and with ions in solution, and enabled examination of changes that occur at different levels of structure organization. The presence of both Ca2+ and Zn2+ ions modify the binding, conformation and thermal stability of the protein in the presence of lipids. Hence, these studies examining molecular interactions of porcine S100A12 in solution complement the previously determined crystal structure information on this family of proteins, enhancing our understanding of its dynamics of interaction with membranes

    The role of Circular Dichroism Spectroscopy in the era of integrative structural biology

    Get PDF
    Circular dichroism (CD) spectroscopy has been used widely in structural biology for literally a half century, primarily to examine the secondary structure, folding and interactions of proteins in solution. With recent developments in instrumentation, it is now possible to apply CD to many additional types of sample environments, including oriented membranes, films, and dehydrated samples. In addition, developments in bioinformatics have made validated CD spectra and metadata available for novel analysis methods on additional types of samples such as membrane proteins, intrinsically disordered proteins, multiple fold types, and multicomponent, macromolecular complexes. New software has also enabled increased inter-operability of CD with other structural biology methodologies, contributing to their use in joint studies of protein structures at various levels of organization

    Differential dehydration effects on globular proteins and intrinsically disordered proteins during film formation

    Get PDF
    Globular proteins composed of different secondary structures and fold types were examined by synchrotron radiation circular dichroism spectroscopy to determine the effects of dehydration on their secondary structures. They exhibited only minor changes upon removal of bulk water during film formation, contrary to previously reported studies of proteins dehydrated by lyophilization (where substantial loss of helical structure and gain in sheet structure was detected). This near lack of conformational change observed for globular proteins contrasts with intrinsically disordered proteins (IDPs) dried in the same manner: the IDPs, which have almost completely unordered structures in solution, exhibited increased amounts of regular (mostly helical) secondary structures when dehydrated, suggesting formation of new intra-protein hydrogen bonds replacing solvent-protein hydrogen bonds, in a process which may mimic interactions that occur when IDPs bind to partner molecules. This study has thus shown that the secondary structures of globular and intrinsically disordered proteins behave very differently upon dehydration, and that films are a potentially useful format for examining dehydrated soluble proteins and assessing IDPs structures

    Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel

    Get PDF
    The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel’s full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate

    Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1

    Get PDF
    The membrane interactions of the antimicrobial peptides aurein 1.2 and caerin 1.1 were observed by 31P and 2H solid-state NMR and circular dichroism spectroscopy. Both peptides were relatively unstructured in water. In the presence of dimyristoylphosphatidylcholine (DMPC) and mixed DMPC and dimyristoylphosphatidylglycerol (DMPG) vesicles, both peptides displayed a considerable increase in helical content with the shorter aurein peptide having a higher α-helix content in both lipid systems. In fluid phase DMPC vesicles, the peptides displayed differential interactions: aurein 1.2 interacted primarily with the bilayer surface, while the longer caerin 1.1 was able to penetrate into the bilayer interior. Both peptides displayed a preferential interaction with the DMPG component in DMPC/DMPG bilayers, with aurein 1.2 limited to interaction with the surface and caerin 1.1 able to penetrate into the bilayer and promote formation of a mixture of lipid phases or domains. In gel phase DMPC vesicles, aurein 1.2 disrupted the bilayer apparently through a carpet mechanism, while no additional interaction was seen with caerin 1.1. Although a lamellar bilayer was retained with the mixed DMPC/DMPG vesicles below the phase transition, both caerin 1.1 and aurein 1.2 promoted disruption of the bilayer and formation of an isotropic phase. The peptide interaction was enhanced relative to the fluid phase and was likely driven by co-existence of membrane defects. This study thus demonstrates that the effects of the lipid phase and domains need to be considered when studying membrane interactions of antimicrobial peptides

    The complete structure of an activated open sodium channel

    Get PDF
    Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4–S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate

    Cannabidiol interactions with voltage-gated sodium channels

    Get PDF
    Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for the treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations. This study used high-resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels. CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD. In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels

    Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltage-gated sodium channel NavMs

    Get PDF
    Purified integral membrane proteins require amphipathic molecules to maintain their solubility in aqueous solutions. These complexes, in turn, are used in studies to characterise the protein structures by a variety of biophysical and structural techniques, including spectroscopy, crystallography, and cryo‐electron microscopy. Typically the amphilphiles used have been detergent molecules, but more recently they have included amphipols, which are polymers of different sizes and compositions designed to create smaller, more well‐defined solubilised forms of the membrane proteins. In this study we used circular dichroism spectroscopy to compare the secondary structures and thermal stabilities of the NavMs voltage‐gated sodium channel in different amphipols and detergents as a means of identifying amphipathic environments that maximally maintain the protein structure whilst providing a stabilising environment. These types of characterisations also have potential as means of screening for sample types that may be more suitable for crystallisation and/or cryo‐electron microscopy structure determinations
    corecore