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Abstract

S100A12 (Calgranulin C) is a small acidic calcium-binding peripheral membrane protein with two EF-hand structural motifs.
It is expressed in macrophages and lymphocytes and highly up-regulated in several human inflammatory diseases. In pigs,
S100A12 is abundant in the cytosol of granulocytes, where it is believed to be involved in signal modulation of
inflammatory process. In this study, we investigated the interaction of the porcine S100A12 with phospholipid bilayers and
the effect that ions (Ca2+, Zn2+ or both together) have in modifying protein-lipid interactions. More specifically, we intended
to address issues such as: (1) is the protein-membrane interaction modulated by the presence of ions? (2) is the protein
overall structure affected by the presence of the ions and membrane models simultaneously? (3) what are the specific
conformational changes taking place when ions and membranes are both present? (4) does the protein have any kind of
molecular preferences for a specific lipid component? To provide insight into membrane interactions and answer those
questions, synchrotron radiation circular dichroism spectroscopy, fluorescence spectroscopy, and surface plasmon
resonance were used. The use of these combined techniques demonstrated that this protein was capable of interacting
both with lipids and with ions in solution, and enabled examination of changes that occur at different levels of structure
organization. The presence of both Ca2+ and Zn2+ ions modify the binding, conformation and thermal stability of the
protein in the presence of lipids. Hence, these studies examining molecular interactions of porcine S100A12 in solution
complement the previously determined crystal structure information on this family of proteins, enhancing our
understanding of its dynamics of interaction with membranes.
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Introduction

The superfamily of calcium binding proteins (CaBPs), also

called EF-hand proteins [1], is involved in several physiological

functions such as motility, cell growth and differentiation, cell cycle

regulation, secretion, Ca2+ homeostasis, regulation of enzyme

activity, protein phosphorylation, organization of cytoskeleton,

and blood coagulation [2]. There are two general classes of EF-

hand proteins: the Ca2+ sensors, which act in Ca2+ signal

transduction as a result of an increase in Ca2+ concentration,

and the Ca2+ buffers, which act to modulate the Ca2+ signal,

maintaining a safe concentration of this ion in the cytosol [3].

S100 proteins [4] are a major subfamily of the EF-hand sensor

proteins, with low molecular mass (10–14 kDa), 25–65% sequence

identities, and three-dimensional structures that are highly

conserved across species. They are exclusively expressed in

vertebrates, where their expressions are tissue- and cell-type

specific [5].

S100 proteins contain two motifs that bind Ca2+ per molecule

[6]. One site is a canonical EF-hand with twelve amino acids

flanked by two helices with a C-terminus that shows high affinity

for Ca2+. The second site is a ‘pseudo-EF-hand’ or ‘S100-specific

EF-hand’. It consists of a fourteen amino acid consensus sequence

motif with an atypical backbone conformation compared to the

usual EF-hand, and includes a number of well-conserved basic

residues [7]. These features result in this EF-hand having a lower

affinity for Ca2+ due to the missing side chain oxygen atoms of Asp

or Glu that are essential for high affinity binding. The EF-hands

are linked to each other by a hinge region, which exhibits low

sequence similarity among S100 proteins.

Besides Ca2+, a number of S100 proteins can also bind Zn2+ or

Cu2+. The interactions with divalent metal cations modulate their

functional properties, inducing changes in their affinity for

interaction partners and promoting homo- or hetero-oligomeriza-

tion. Comparisons of apo- and holo-protein crystal structures [8]

indicate that Ca2+ binding generally produces helix rearrange-

ments within each subunit of the dimer, resulting in the exposure

of hydrophobic surfaces (one in each monomer). These surfaces

are comprised of residues present in the hinge region and are

involved in target protein recognition [9–11].

S100A12 is a member of the S100 family that is expressed in

macrophages, endothelium and lymphocytes, being highly up-

regulated in several human inflammatory diseases [12], including
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Crohn’s disease, rheumatoid arthritis, cystic fibrosis, Kawasaki

disease, and other inflammatory states [13,14]. It exists under

physiological conditions as a non-covalent antiparallel dimer held

together by hydrophobic interactions. S100A12 binds two calcium

ions per subunit and one zinc ion with high affinity. Moreover,

zinc binding increases both calcium binding and target protein

binding affinities [15]. S100A12 is highly abundant in the cytosol

of granulocytes [16], but it is able to translocate to membranes

following the interactions with calcium [12].

Although S100A12 specific functions have not yet been fully

elucidated, it has been shown that interactions between S100

proteins and membranes are present in different physiological

responses, such as inflammatory processes, neutrophil chemotaxis

and cell adhesion [17]. In particular, S100A12 is involved in

induced migration of monocytes [18]. It is known that the folding

and stability of S100A12 can be modulated by the presence of the

metal ions [19]. Moreover, the cell location of S100A12 has been

shown to be calcium dependent, with an elevated calcium

concentration being responsible for the protein transfer from the

cytosol to the membrane fraction [20]. It can thus be concluded

that states of S100A12 when bound to ions and/or membranes are

part of the protein activity. Hence, studies that can address how

the protein-membrane interaction is affected by the presence of

divalent ions are important for unraveling basic aspects of the

protein participation in these processes.

Recently, a thermodynamic study with recombinant porcine

S100A12 demonstrated that its structural stability was increased in

the presence of Zn2+ and Ca2+[21]. However, the metal ions

influence on the dynamics conformation and stability of S100A12

in the presence of membrane models has not been investigated so

far. In the present study, synchrotron radiation circular dichroism

(SRCD) spectroscopy was used to further investigate the intermo-

lecular interactions relevant to S100A12 role as a peripheral

membrane protein, notably were there different effects on its

structure, binding and stability associated with different lipid head

group types. SRCD spectroscopy, fluorescence spectroscopy, and

surface plasmon resonance (SPR) were used to monitor secondary

structural changes and thermal stability, tertiary structural

changes, and binding affinities, respectively, to provide insights

regarding S100A12-membrane interactions.

Materials and Methods

Protein expression and purification
Porcine S100A12 [Uniprot ID P80310] was produced as

previously described [21]. Briefly, E. coli BL21(DE3) cells

harboring the pET28a-S100A12 vector were grown at 37uC in

Luria-Bertani medium containing kanamycin (30 mg/mL), then

induced with isopropyl-b-D-thiogalactopyranoside (0.1 mM). Cell

growth continued at 22uC. The cells were harvested by

centrifugation and the cell pellets were stored at 220uC. Cells

were resuspended in 20 mM Tris, 150 mM NaCl, pH 8.0 and

lysed by sonication. Insoluble material was removed by centrifu-

gation. S100A12 was purified on a Ni-NTA superflow column

(QIAGEN). The column was washed with buffer and the target

protein was eluted with 250 mM imidazole. The cleavage of His-

tag from S100A12 was performed using 1 unit of thrombin

(Sigma) to 250 mg of protein for 24 h at room temperature. The

thrombin was further removed using a benzamine resin (GE

Healthcare). Samples from each step were analyzed on SDS-

PAGE (Suppl. Information). Protein samples were then dialyzed

against the buffers used for SRCD, fluorescence and SPR studies.

Protein concentration was determined by UV absorbance at 280 nm

using the extinction coefficient e280 = 19.940 M21.cm21calculated

using ProtParam software [22] on Expasy server.

Sequence alignment of S100A12 proteins
Alignment between the porcine S100A12 (Uniprot code

P80310) and the human protein (Uniprot code P80511) was

performed with protein BLAST program [23]. The 2Struc

webserver [24] was used to quantify the secondary structure of

human S100A12 in the apo- and holo-form.

Steady state fluorescence spectroscopy
The intrinsic fluorescence emission spectra of S100A12 (5 mM)

in 5 mM HEPES buffer (pH 7.4) were measured in the presence

of large unilamellar vesicles (LUVs) of either 1,2-dipalmitoyl-sn-

glycero-3-phosphocholine (DPPC) or 1,2-dipalmitoyl-sn-glycero-3-

phosphoglycerol (DPPG), prepared using a 1:100 protein:lipid

molar ratio, as previously described [25]. Measurements at 25uC
were made using an ISS K2 spectrofluorimeter (ISS Fluorescence,

Analytical and Biomedical Instruments, Illinois, USA) with

excitation at 274 nm in a 1 cm pathlength quartz cuvette.

Emission spectra were recorded over the wavelength range from

290 to 450 nm. Calcium chloride and/or zinc chloride were

added in a single aliquot (5 mL) to yield a 1 mM solution.

Synchroton Radiation Circular Dichroism Spectroscopy
The SRCD spectra of S100A12 (75 mM) in aqueous solution

were collected over the wavelength range from 280 nm to

170 nm, using a 1 nm interval and a 2 s dwell time, at 25uC, in

a cylindrical quartz cell (Hellma Ltd.) with a pathlength of 99 mm

on the CD1 beamline located at the ISA synchrotron (University

of Aarhus, Denmark). CDTools [26] software was used for data

processing: the average of the three scans of the corresponding

buffer baseline (10 mM sodium phosphate pH 7.0) was subtracted

from the average of three scans of the sample, smoothed with a

Savitky–Golay filter, calibrated with a spectrum of camphour

sulphonic acid measured at the beginning of the data collection,

and converted to delta epsilon units using a mean residue weight of

118. Analyses of the secondary structural contents used the

DichroWeb server [27], with database SP175 [28] and the

algorithm ContinLL [29].

SRCD studies of S100A12 binding to the liposomes entailed

incubating the protein (75 mM) for 10 min at 25uC with vesicles of

DPPC and DPPG at a protein/lipid ratio of 1:100 and 10 mM

Tris, pH 8.0. Measurements were obtained as above except using

a pathlength of 104.5 mm.

Thermal stability studies of S100A12 in both the presence and

absence of liposomes and/or 1 mM Ca2+ and/or Zn2+ were

performed over the temperature range from 5 to 85uC in 5uC
increments, using a 5 min equilibration time at each temperature.

Three repeat measurements were made at each temperature, and

the first and last of these compared to ensure that thermal

equilibrium had been achieved prior to the measurement at each

temperature.

Surface Plasmon Resonance (SPR)
The interaction of apoS100A12 with phospholipid bilayers in

10 mM HEPES (pH 7.4), 100 mM NaCl was analyzed by SPR on

a BIAcore X (GE Healthcare). Initially, a solution of octyl b-D-

glucopyranoside solution (40 mM) was used to clean the L1

sensorchip [30]. LUVs of DPPG and DPPC with average

diameter of 100 nm were applied for 50 min, with a flow rate of

1 mL/min, at 25uC, to immobilize them on the sensorchip surface.

The lipidic surface was washed by injections of 4 mM NaOH. The
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negative control of bovine serum albumin (1.5 mM) was applied to

both cells. Increasing concentrations of S100A12 (ranging from

31 nM to 8 mM) in the HEPES buffer were injected onto the

sensorchip, and the interaction with the phospholipid bilayer was

monitored for 10 min at a flow rate of 20 mL/min. After this time,

the running buffer alone was injected to monitor S100A12

dissociation from the lipid bilayer. The binding of S100A12 to the

liposomes was followed in real-time by the sensorgrams resulting

from the kinetics assays with the immobilized lipid bilayer on the

L1 Sensorchip (GE Healthcare) and the protein injected at

different concentrations. For each trial, the response of a control

surface (cell with no lipids immobilized) was subtracted out to

eliminate any nonspecific binding and refractive index changes

due to buffer change.

The affinity constants were directly determined from the

equilibrium binding responses over a range of protein concentra-

tions (from 31 nM to 8 mM) by fitting the data to a Langmuir

adsorption isotherm. The curve fitting was checked by residual

plots and x2. All data analysis was performed using BIAevaluation

software (Biacore, version 4.1). The dissociation phase was fit to

the integrated rate equation: R~R0ekd (t{t0), where R0 is the

response at the start of the fit data, kd is the dissociation rate

constant, and t0 is the time at the start of the fit data. The

association phase was fitted to the integrated equation:

R~Req(1{e{(kaCzkd )(t{t0)), where C is the analyte (protein)

concentration, and ka is the association rate constant. The

dissociation constant (Kd) was then calculated from the equation:

Kd~kd=ka [31].

Release of entrapped calcein from lipid vesicles
LUVs of DPPG, loaded with the fluorescent probe calcein

(Sigma-Aldrich), were prepared by dissolving the phospholipid in a

chloroform/methanol 2:1 (v/v) mixture, followed by the solvent

evaporation to yield a thin lipid film. The film was hydrated by the

addition of a buffer containing 10 mM HEPES, pH 7.4, 10 mM

NaCl and 35 mM calcein at 45uC, and vigorously agitated by

vortexing. The vesicle suspension was freeze-thawed and then

extruded through a Mini-extruder (Avanti Polar Lipids, Inc.).

Non-encapsulated calcein was removed on a Sephadex G-65

column and eluted with 10 mM HEPES pH 7.4, 100 mM NaCl.

Liposome concentrations were determined from organic phos-

phorus assays [32]. Fluorescence was measured using a 1 cm

pathlength quartz cuvette, under continuous stirring, with

excitation at 490 nm and emission at 520 nm, at 25uC. Increasing

concentrations of S100A12 (from 1 to 9 mM) were added to LUVs

(0.1 mM), and the kinetics of the release of calcein from was

monitored as an increase in fluorescence intensity after 10 min.

The percent of leakage was calculated according to the following

equation:

%Leakage~
½F{F0�
½Fmax{F0�

:100

where F0 is the fluorescence intensity of the intact liposomes, F

and Fmax the respective intensities just before and after the

addition of 10% (w/v) Triton X-100 to the cuvette (ie. before and

after disruption of the LUVs).

Results and Discussion

S100A12 alignment and structure comparison
Human and porcine S100A12 exhibit a 75% sequence identity

(Suppl. Information). According to their locations in the human

enzyme, the canonical EF-hand will be located between residues

19 and 33, and the non-canonical one might be located between

residues 62 and 74 in the porcine enzyme. The zinc binding sites

are located at residues His16, Asp26, His86 and His90.

The secondary structures of human S100A12 calculated from

the crystal structures consist of 63% of helix, 4% strand and 33%

of other (disordered coil plus turn) in the apo-form (PDBID

2WCE), and 61% helix, 4% strand, and 35% other in the holo-

form (PDBID 1E8A). The secondary structure content of the apo-

and holo- forms of porcine S100A12 determined using SRCD

spectroscopy (Table 1) were found to be 62% helix, 2% strand,

and 36% other, versus 64% helix, 2% stand and 34% other,

respectively, suggesting there is very little difference in the porcine

structures at 25uC.

Intrinsic Fluorescence Emission Spectroscopy
Porcine S100A12 has two tyrosine residues, one of which

(Tyr18) appears in a conserved position when compared to the

human S100A12 and is partially buried in the apo- and holo-forms

of the crystal structure. In the holo-form of human S100A12, the

second Tyr residue is slightly less exposed to the solvent than in the

apo-protein, as described by Moroz et al. [33].

A series of fluorescence emission spectra were measured to

evaluate the binding of porcine S100A12 to liposomes in aqueous

solution and the influence of Ca2+, Zn2+ and the mixture of both

ions in that process. In aqueous solution the emission maximum

occurred at 307 nm (Figure 1a) for the apo-protein. When either

of the ions was added to the solution, an increase of ,20% in its

fluorescence intensity was observed. Moreover, when both ions

were added together, the fluorescence intensity increase was even

greater (,60%). The calcium and zinc binding sites in the first EF-

hand motif are located very close to the two Tyr residues. In

porcine S100A12 the first Tyr residue (Tyr18) is located at the

beginning of helix two (H2) and the second one (Tyr25) is part of

the non-canonical EF-hand loop (loop 1). Upon Zn2+ and/or Ca2+

binding to S100A12 the microenvironments of both Tyr residues

seem to be affected, which is also true in the presence of the

Table 1. Secondary structure content of human (calculated
from crystal structures) and porcine S100A12 (determined
from SRCD spectra).

a-helix
(%)

b-strand
(%)

other
(%)

Human apo 63 4 33

holo 61 4 35

Porcine apo 62 2 36

Ca2+ 64 2 34

Zn2+ 64 2 34

Ca2+/Zn2+ 65 1 34

DPPC 65 1 34

DPPC+Ca2+ 65 1 34

DPPC+Zn2+ 62 4 34

DPPC+Ca2+/Zn2+ 64 2 35

DPPG 69 1 30

DPPG+Ca2+ 24 23 53

DPPG+Zn2+ 30 17 53

DPPG+Ca2+/Zn2+ 46 11 43

doi:10.1371/journal.pone.0082555.t001
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vesicles only (Figure 1a). The S100A12 structural alterations taking

place upon ion binding can be visualized in Fig. S12 (Suppl.

Information).

Ion binding to S100A12 induced an enhancement of Tyr

fluorescence quantum yield (Figure 1), showing that in the absence

of ions the Tyr residues were located in different microenviron-

ments. As already observed for other S100 members, the

fluorescence enhancement must be related to changes in the

environment of the Tyr involving the removal of quenching

groups (such as COO- or CONH) [34]. The binding of calcium to

S100A12 induced a drastic reorientation of helix 2 (Tyr18) and

helix 3. As a consequence, a hydrophobic pocket was formed by

helixes 3 and 4 and loop 2. Such pocket creates a redistribution of

the surface charge that probably affects the region involved in

target recognition (residues from Lys40 up to Thr50). This effect

induced by the presence of Ca2+ is common to several members of

S100 proteins. The exposition of a hydrophobic cleft upon Ca2+

binding is accompanied by physiological responses, related to

recognition and interaction with molecular targets, such as

proteins and other ligands [34–36].

The presence of both ions at their respective binding sites

promotes conformational rearrangements within this microenvi-

ronment in the protein and also the displacement of water

molecules from the region, which could account for the observed

effect on the fluorescence emission. A similar, albeit larger, effect

has been reported in calmodulin [37], in which an increase in

fluorescence has been reported upon addition of Ca ions. It was

suggested in that case that the spectral changes were due to one

(Tyr138) of the two tyrosine residues present in its C-domain [38],

which appears to be in a less polar environment when Ca2+ was

bound to the protein.

The binding of S100A12 to the DPPC LUVs (Figure 1b)

promoted a 2.8-fold increase in the fluorescence intensity, which

could also be a consequence of the changes in the surroundings of

one or both of the Tyr residues, probably due to the changes in its

exposure to a less polar environment at the water/lipid interface of

the bilayer. Preincubation of S100A12 with either Ca2+ or Zn2+

and then addition to zwitterionic liposomes resulted in an increase

in the fluorescence intensity of approximately 50% when

compared to that of the protein in the absence of the liposome

(Figure 1b). Similar fluorescence intensity was observed when

S100A12 was bound to both metal ions in the presence of DPPC,

with an approximate 80% increase in the fluorescence intensity

compared to the apo-protein.

In contrast, the fluorescence intensity of apo-S100A12 when

incubated with DPPG liposomes was reduced (Figure 1c). The

charged nature of this phospholipid surface could act as a

fluorescence quencher for the Tyr residue, most likely the one that

is exposed to the liposome interface. However, when S100A12 was

bound to Ca2+ and incubated with the negatively charged

liposomes, a 40% increase in fluorescence intensity was observed.

This effect was enhanced substantially in the presence of Zn2+,

with a 4-fold increase in fluorescence emission, suggesting that the

holo protein is capable of binding more effectively to these lipids.

These results suggest a synergy in the binding to the DPPG

liposomes in the presence of the ions, resulting from a significant

conformational change in the microenvironment of the Tyr

residues that becomes more buried from the aqueous

environment.

SRCD Spectroscopic studies of molecular interactions
Conventional (lab-based) circular dichroism (CD) spectroscopy

has been previously used [21] to examine S100A12 in solution

with and without ions present. In this paper, the use of SRCD

Figure 1. Fluorescence emission spectra of S100A12 (5 mM) a)
in aqueous solution (black) and incubated with Ca2+ (red), Zn2+

(blue), both ions together (green), DPPC vesicles (dot grey),
DPPG (dash grey) vesicles. b) in the presence of DPPC
liposomes (black) and c) DPPG liposomes (black), in both cases
with Ca2+ (red), Zn2+ (blue), or Ca2+/Zn2+ together (green).
doi:10.1371/journal.pone.0082555.g001
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spectroscopy has extended the spectra to much lower wavelengths,

enabling more accurate estimates of the secondary structure

contents and clearer observation of structural changes. Further-

more, the high flux of the synchrotron light enhances the signal-to-

noise levels of the measurements, thus overcoming the interference

of both the lipids and the high salt concentrations in the buffers

used to study this protein. Even though the NaCl absorbance is

non-chiral, it is substantial in the far UV wavelengths, and hence

diminishes the amount of light reaching the detector, thus making

measurements noisier and ultimately preventing measurements

below ,210 nm. Because the information below this wavelength is

critical for identifying secondary structures containing sheet and

disordered structures, SRCD enables much more subtle confor-

mational changes to be detected. The SRCD spectrum of apo-

S100A12 (Figure 2) exhibits negative peaks at 222 nm and

208 nm, a positive maximum at 193 nm and a shoulder in the

region of 180–185 nm. These are characteristics of a protein that

is dominated by helical secondary structure (Table 1) but which

has a significant amount of structure that is either in turns or

unordered.

It has been reported that the EF-hand motifs can assume an

open conformation after Ca2+ binding due to a conformational

change attributed to the rearrangement of the helixes in the motif

[39]. In S100B, a large rotation (,90 degrees) of helix 3 is

observed in the typical EF-hand domain (EF2) upon the addition

of calcium [40]. Still for S100B, a comparison between apo- and

Ca2+-bound forms indicates that a large repositioning of several

sidechain oxygen ligands occurs only at the typical EF-hand, while

the pseudo -EF-hand has minor structural changes upon Ca2+

binding [41]. Also, for S100A2 [42] and S100A5 [43] the presence

of the ions did not change the shape of the CD spectra, but only

discrete changes in ellipticity were observed at 195 and 208 nm.

However, for S100A5, a huge change on its near-UV spectra was

observed, thus suggesting that the effect of the ions was more

pronounced on the tertiary structure of the protein. Unlike other

members of S100 family, S100A10 does not use a calcium

dependent mechanism in its interactions with target proteins [41].

The binding of recombinant porcine S100A12 to Ca2+, Zn2+, or

Ca2+/Zn2+, caused only a minor spectral change in the SRCD

spectrum of the protein. Very slight increases in the intensity of the

peaks attributable to a-helical structures were observed upon

binding to the ions (Figure 2). Similar behavior has been observed

in the CD spectra of calbindin, another calcium binding protein,

when bound to Zn2+ [44] and Ca2+ [45], where the secondary

structure of the protein was not greatly affected. Very modest

changes have also been observed in the three-dimensional

structure of the apo-calcyclin (S100A6) upon Ca2+ binding [46],

contrasting with the large structural changes caused by the

opening of the globular domains in the Ca2+ sensors proteins.

The SRCD spectra of S100A12 bound to the liposomes in the

absence of the ions were not significantly different from those of

the protein in aqueous solution (Figure 3), suggesting again that

only minor conformational changes might occur in the overall

secondary structure of the protein upon binding to the liposomes.

The SRCD analysis suggests that the differences that had been

observed in fluorescence intensity might be associated with local

changes in the regions of the Tyr residues that do not affect the

overall fold of the protein.

Although the SRCD spectra of the S100A12 bound to both

types of liposomes are very similar, a slight red shift (,2 nm) could

be observed in the low wavelength region (below 205 nm) of the

spectra in the presence of the DPPG liposomes. A small increase

(,5%) in the helix content was observed in the presence of the

Figure 2. SRCD spectra of S100A12 (75 mM) in aqueous
solution in apo-state (black), and in the presence of Ca (red),
Zn (blue) and both ions together (green).
doi:10.1371/journal.pone.0082555.g002

Figure 3. SRCD spectra of S100A12 in the presence of a) DPPC
(black) and b) DPPG (black) without ions, and, in both cases,
incubated with Ca2+ (red), Zn2+ (blue) or Ca2+/Zn2+ (green)
together.
doi:10.1371/journal.pone.0082555.g003

S100A12-Membrane Interactions
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DPPG vesicles, which may reflect a slight ordering process

resulting from positively charged residues being attracted to the

oppositely charged vesicle surface.

The binding of S100A12 to liposomes in the presence of the

ions showed dramatic differences depending on the surface charge

of the vesicles. For the zwitterionic DPPC liposomes, only minor

changes in the signal were observed in the presence of Ca2+, Zn2+

or both Ca2+/Zn2+ (Figure 3a). The calculated secondary structure

content of the protein bound to the ions in the presence of DPPC

showed no significant changes. Conversely, when S100A12 was

bound to the negatively charged liposomes (DPPG), huge spectral

changes were observed (Figure 3b) in the presence of the ions. The

helical content of the protein was decreased to 30% or less when

Ca2+ or Zn2+ were present. The binding of S100A12 to ions

appears to facilitate its interaction with liposomes. This may be

similar to the behavior observed for S100A13 [47], in which the

binding to the ions promotes the availability of a solvent-exposed

hydrophobic surface(s) in the protein, facilitating its interaction

with lipid vesicles.

Thermal Stability
The temperature of melting (Tm) determined for apoS100A12

in aqueous solution using SRCD was ,54uC (Figure 4a, Table 2).

The protein effectively retained its native state (as indicated by the

intensities of the 222, 208, 193, and 185 nm peaks) up to 45uC,

but beyond this point the thermal denaturation appeared to be a

highly cooperative process (Figure 5a), with the protein assuming

an essentially fully denatured state above 65uC. As the Tm values

calculated based on all the different wavelengths (which monitor

different secondary structural features) are fit by a single sigmoid-

like function, this suggests that the unfolding may be a highly

cooperative 2-state process, involving simultaneous changes

throughout the entire molecule.

The binding of the S100 proteins to ions is known to enhance

their thermal stability [48], which was also previously demon-

strated for porcine S100A12 [21]. Although only minor changes

were observed in the secondary structure of S100A12 when bound

to the ions at 25uC, its thermal stability was significantly enhanced

after binding to the ions, as seen from the increase of the Tm values

of the holo- protein (Table 2).

The thermal stability of several members of the S100 family has

been characterized by far-UV CD and differential scanning

calorimetry [42,49–51]. Table 3 shows the Tm values for some

S100 proteins in the apo-state and for the heterodimer formed by

the S100A8 and S100A9. Most of these proteins would be

considered to be thermostable, with temperature of melting (Tm)

for the apo-form above 50uC. Similarly to S100A12, the thermal

stabilities of these S100 proteins were increased in the presence of

calcium. The effect of the distinct metal ions on the thermal

stability of S100 proteins has demonstrated different behaviors.

For S100A2, the ions Zn2+ and Ca2+ were shown to regulate

protein thermal stability antagonistically, Zn2+ being a destabilizer

and Ca2+ a stabilizer [42], however in the presence of both ions

the thermal stability of S100A2 was also increased, in the same

way to what is observed for porcine S100A12.

Conversely, the thermal stability of porcine apoS100A12 in the

presence of both vesicles of DPPC and DPPG (Figure 4b and 4c,

respectively) was reduced. For the DPPC vesicles the cooperativity

of the denaturation was also reduced (Figure 4e), while the protein

bound to the negative liposome retained its high cooperative

transition to a denatured state.

In the presence of the lipids and ions, two distinct behaviours

were observed for the thermal stability of S100A12. The complete

set of CD spectra and thermal transition curves for S100A12 in the

presence of each of the ions and/or the vesicles are shown as

Supplemmentary Figures. First, in the presence of the zwitterionic

vesicles, the Tm values were enhanced when the protein was

Figure 4. Thermal stability studies. a) SRCD spectra of S100A12 in
the absence of vesicles or b) in the presence of DPPC vesicles or c) in
the presence of DPPG vesicles as a function of temperature. The
temperature range was from 5uC (blue) to 85uC (red), in 5uC steps
(intermediate curves in black). After the heating process, the sample
was cooled to 25uC (dashed green).
doi:10.1371/journal.pone.0082555.g004
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bound to Ca2+, Zn2+ or both ions together (Table 2), in a similar

way to that observed in the absence of the lipids. In contrast, in the

presence of the DPPG liposomes, the Tm values of S100A12 were

dramatically decreased when the ions were added. A similar

behavior was observed for S100A13 [47], in which the Tm for

unfolding of the protein was decreased by ,30uC in the presence

of negatively-charged vesicles, showing the protein was severely

destabilized upon interaction with the vesicles. It seems probable,

therefore, that the formation of the S100A12-ion-liposome

complex requires interactions of S100A12 with the head groups

of the phospholipid via charged residues that might contribute

significantly for ion binding. This additional interaction is

probably affecting the residues involved in the binding of both

metal ions and changing dramatically protein stability and folding.

Surface Plasmon Resonance (SPR)
The SPR studies were used as complimentary evidence that

S100A12 is able to bind to the liposomes in the apo-form and to

characterize its apparent affinity toward the lipid bilayers. The

interactions of S100A12 with DPPG and DPPC were observed on

the surface of the L1 sensorchip. The sensorgrams for the

interaction with the immobilized bilayers (Figure 6) showed that in

both cases an increased of the amount of protein was bound to the

lipids when increasing concentrations of protein were applied to

the sensorchip. The behavior of the signal depended on the

increase in concentration of the protein, and so enabled the

determination of the affinity of the porcine S100A12 for the

different types of phospholipid surfaces. The fits of the sensor-

grams produced dissociation constants (Kd) for DPPG and DPPC

bilayers of 0.63 and 5.9 mM, respectively. The 10-fold increase for

the DPPC lipids could be attributed to the role of electrostatic

interactions in the protein-lipid binding, since S100A12 is

positively charged (pI of 5.5) at neutral pH.

The kinetic parameters of the association and dissociation

processes of S100A12 from the lipid bilayers are summarized in

Figure 5. Curves monitoring the 185, 193, 202, 208 and 222 nm peaks as a function of temperature for the transitions of
apoS100A12 in a) the absence of vesicles or in the presence of b) DPPC or c) DPPG vesicles. Tm determination for S100A12 denaturation
in d) the presence of the ions or e) in the presence of the ions and DPPC vesicles, and f) in the presence of the ions and DPPG vesicles. Transitions
were monitored at 222 nm and expressed as fraction of protein denatured (FD), using a sigmoidal curve fit on Origin software.
doi:10.1371/journal.pone.0082555.g005

Table 2. Tm values for porcine S100A12 in the presence of
liposomes, with and without Ca2+ and Zn2+.

Sample/Tm No lipids (6C) DPPC (6C) DPPG (6C)

No ion 54.260.5 41.160.9 48.260.3

Ca2+ 56.360.4 51.360.3 30.660.2

Zn2+ 58.760.4 54.660.6 31.660.7

Ca2+/Zn2+ 62.060.5 52.760.9 41.860.4

doi:10.1371/journal.pone.0082555.t002

Table 3. Apparent Tm values for other members of S100
family from references [14–18].

Protein Apo (6C) Ca2+ (6C) Zn2+ (6C) Ca2+/Zn2+ (6C)

S100A12 54.260.5 56.360.4 58.760.4 62.060.5

S100A2 58.4 68.1 56.6 65.0

S100A8 59.9 65.8 - -

S100A9 52.8 70.0 - -

S100A8/A9 68.7 79.7 - -

S100A13 7661 9261 - -

calbindin D9k (S100G) 85 .100 - -

doi:10.1371/journal.pone.0082555.t003
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Table 4. The values determined are similar to those found for

calponin [52] binding to liposomes of phosphatidyl serine (1.3 mM)

and phosphatidyl inositol (1.5 mM).

Leakage Assays
The main purpose of the leakage assays was to investigate the

perturbation caused on the vesicles due to the presence of the

protein. We had investigated how the structure of the apo-

S100A12 was affected after binding using SRCD and fluorescence

studies, and here we intended to focus on the effects caused on the

lipid system S100A12 was able to disturb the liposomes, releasing

calcein (Suppl. Information). The extent of calcein release was

proportional to the amount of S100A12 added. However, only a

moderate leakage action was observed. 36% leakage was reached

in the presence of 1 mM of S100A12 (corresponding to a ,1:10

protein-to-lipid molar ratio). This moderated leakage could be a

result of the protein adsorption at the liposome surface, without an

efficient penetration into the lipid acyl chains, in agreement with

the fluorescence measurements with DPPC liposomes.

Overall interaction mechanism between S100A12 and
model membranes

Taken together, the SRCD results suggest that the binding of

the ions to S100A12 in the presence of zwitterionic membranes

does not significantly affect its secondary structure content and

fold, although different lipid head groups do have significant

influence on the protein stability. On the other hand, the changes

observed in fluorescence suggest that tertiary changes, including

the microenvironment of the Tyr residues, were influenced by the

presence of the ions, and SPR studies indicate the relative strength

of the lipid-protein interactions.

The higher affinity of S100A12 for negatively charged vesicles

indicates that the charge interactions between the S100A12 and

the liposomes surface can play a role in modulating the action of

this protein onto biological membranes. This result suggests that

wherever charges are present in the real cell membrane that could

be the docking point for S100A12. This has an interesting

biological implication since it has been proposed that segregated

domains in the lipid membrane can indeed act as functional units

to trigger signals through the membrane. Moreover, the different

electrostatic potential generated by charged domains in the

membrane could be the way used by the protein to find its

partner receptor (RAGE receptor has been suggested as that

partner to human S100A12) in the case a more specific binding

mechanism takes place.

The decrease of the melting temperatures of S100A12 in the

presence of negatively charged membranes suggests that the

protein overall structure could be in a less ordered structure in the

presence of the charged region of the membrane and this would

facilitate lipid-protein interactions as shown by our SPR results.

Thus, the events involving the transition to a more labile (or less

ordered) structure, the exposition of a hydrophobic cleft and the

protein preference for negatively charged membranes (or domains

in these membranes) all suggest that the interactions with ions and

liposomes might work as a molecular triggering mechanism for the

protein to adopt the adequate conformation and to find its targets

on the membrane surface.

Our combined use of these techniques demonstrated that

S100A12 protein is capable of interacting both with lipids and

with ions in solution, and has enabled examination of changes that

occur at different levels of structure organization.

Conclusions

A number of well-characterized proteins have been shown to

exist in dynamic exchange between cytosolic and membrane-

associated states, regulated by specific cellular signals [10]. In

response to variations in the level of calcium, S100 proteins can

Figure 6. SPR sensorgrams of the porcine apoS100A12
adsorption onto a) DPPC and b) DPPG bilayers immobilized
on a L1 sensorchip. Injections of the protein were made at 0 min.
Binding was performed at a 20 mL/min flow rate, at 25uC, for
10 minutes, and running buffer was added to start the dissociation.
Arrows indicate the points where the S100A12 concentrations were
increased: 31 nM (bold), 62 nM, 125 nM, 250 nM, 0.5 mM, 1 mM, 2 mM,
4 mM, and 8 mM (dot).
doi:10.1371/journal.pone.0082555.g006

Table 4. Association (ka) and dissociation (kd) rate, and
dissociation constant (Kd) of S100A12 on DPPC and DPPG
bilayers immobilized on a L1 sensorchip.

Lipid ka (1/Ms).103 kd (1/s).1022 Kd (mM)

DPPC 6.13 3.60 5.90

DPPG 15.5 0. 97 0.63

doi:10.1371/journal.pone.0082555.t004
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interact with distinct target proteins and cellular compartments

that are implicated in multiple intracellular and extracellular

activities.

Whilst crystal structures of S100 proteins from various species

have detailed the structures of the holo- and apo- enzymes, they

have not shown the dynamics of the molecules in solution, nor

their interactions with ions/phospholipid molecules. In this study

we used SPR, fluorescence and SRCD spectroscopies to show that

S100A12 interacts with both zwitterionic and negatively-charged

membrane both in its apo- and holo- forms. Upon such

interactions, not only are there changes in the polypeptide

backbone structures, as determined from the SRCD spectra, but

also intrinsic fluorescence changes suggest that modified tertiary

interactions may also be occurring that change the relative

environments of one or more Tyr residues. The interactions

drastically affect the protein thermal stability in the different

environments. The SPR measurements have shown that the

protein binds more tightly to negatively-charged lipids. In the

presence of the ions Ca2+ and Zn2+, the conformational changes

occurred in S100A12 due to the interactions with membranes

which strongly depend on the surface charge of the vesicle. This

suggests stabilization of charged residues in protein structure via

electrostatic interactions with lipid head groups could modulate

the S100A12 interaction with membranes. Local accumulation of

phospholipids with negatively charged head groups (such as

inositols and/or phosphoglycerols) in the granulocytes membrane

could provide the surface with electrostatics in which the

interaction with S100A12 could take place. Taken together with

the important role of Ca2+ as second messenger in various

signaling pathways, and the remarkable interaction of S100A12

with membranes in the presence of these ions, it is probable,

therefore, the translocation pathway of S100A12 might occur in

response to an increase in intracellular levels of these ions, in a

similar way as has been observed for other S100 proteins, such as

S100A13 [53], S100A8 [54].

These studies of the molecular interactions, especially with lipid

membranes, are thus complementary to the high-resolution crystal

structure studies, and both types of information together can be

optimally used to understand the molecular basis of the binding of

lipids and divalent cations by S100A12. These in turn, provide

insight into the roles of these proteins in molecular signaling and

recognition.

Supporting Information

Figure S1 a) SRCD spectra of the thermal stability study for

S100A12 with Ca2+. The temperature range was from 5uC (blue)

to 85uC (red), in 5uC steps (intermediate curves in black). After the

heating process, the sample was cooled to 25uC (dashed green). b)

Curve transition for S100A12 with Ca2+ monitored at 185, 193,

202, 208 and 222 nm peaks as a function of temperature.

(TIF)

Figure S2 a) SRCD spectra of the thermal stability study for

S100A12 with Zn2+. The temperature range was from 5uC (blue)

to 85uC (red), in 5uC steps (intermediate curves in black). After the

heating process, the sample was cooled to 25uC (dashed green). b)

Curve transition for S100A12 with Zn2+ monitored at 185, 193,

202, 208 and 222 nm peaks as a function of temperature.

(TIF)

Figure S3 a) SRCD spectra of the thermal stability study for

S100A12 with Ca2+ and Zn2+. The temperature range was from

5uC (blue) to 85uC (red), in 5uC steps (intermediate curves in

black). After the heating process, the sample was cooled to 25uC

(dashed green). b) Curve transition for S100A12 with Ca2+ and

Zn2+ monitored at 185, 193, 202, 208 and 222 nm peaks as a

function of temperature.

(TIF)

Figure S4 a) SRCD spectra of the thermal stability study for

S100A12 with Ca2+ in the presence of DPPC vesicles. The

temperature range was from 5uC (blue) to 85uC (red), in 5uC steps

(intermediate curves in black). After the heating process, the

sample was cooled to 25uC (dashed green). b) Curve transition for

S100A12 with Ca2+ in the presence of DPPC vesicles monitored at

185, 193, 202, 208 and 222 nm peaks as a function of

temperature.

(TIF)

Figure S5 a) SRCD spectra of the thermal stability study for

S100A12 with Zn2+ in the presence of DPPC vesicles. The

temperature range was from 5uC (blue) to 85uC (red), in 5uC steps

(intermediate curves in black). After the heating process, the

sample was cooled to 25uC (dashed green). b) Curve transition for

S100A12 with Zn2+ in the presence of DPPC vesicles monitored at

185, 193, 202, 208 and 222 nm peaks as a function of

temperature.

(TIF)

Figure S6 a) SRCD spectra of the thermal stability study for

S100A12 with Ca2+ and Zn2+ in the presence of DPPC vesicles.

The temperature range was from 5uC (blue) to 85uC (red), in 5uC
steps (intermediate curves in black). After the heating process, the

sample was cooled to 25uC (dashed green). b) Curve transition for

S100A12 with Ca2+ and Zn2+ in the presence of DPPC vesicles

monitored at 185, 193, 202, 208 and 222 nm peaks as a function

of temperature.

(TIF)

Figure S7 a) SRCD spectra of the thermal stability study for

S100A12 with Ca2+ in the presence of DPPG vesicles. The

temperature range was from 5uC (blue) to 85uC (red), in 5uC steps

(intermediate curves in black). After the heating process, the

sample was cooled to 25uC (dashed green). b) Curve transition for

S100A12 with Ca2+ in the presence of DPPG vesicles monitored at

185, 193, 202, 208 and 222 nm peaks as a function of

temperature.

(TIF)

Figure S8 a) SRCD spectra of the thermal stability study for

S100A12 with Zn2+ in the presence of DPPG vesicles. The

temperature range was from 5uC (blue) to 85uC (red), in 5uC steps

(intermediate curves in black). After the heating process, the

sample was cooled to 25uC (dashed green). b) Curve transition for

S100A12 with Zn2+ in the presence of DPPG vesicles monitored at

185, 193, 202, 208 and 222 nm peaks as a function of

temperature.

(TIF)

Figure S9 a) SRCD spectra of the thermal stability study for

S100A12 with Ca2+ and Zn2+ in the presence of DPPG vesicles.

The temperature range was from 5uC (blue) to 85uC (red), in 5uC
steps (intermediate curves in black). After the heating process, the

sample was cooled to 25uC (dashed green). b) Curve transition for

S100A12 with Ca2+ and Zn2+ in the presence of DPPG vesicles

monitored at 185, 193, 202, 208 and 222 nm peaks as a function

of temperature.

(TIF)

Figure S10 a) SDS-PAGE of the purified S100A12. Column 1:

molecular weight markers (mioglobin fragments), column 2:

S100A12 obtained following gel filtration chromatography; b)
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Aligned sequences of human and porcine S100A12. Positively

charged residues are in blue, negatively charged residues in red.

Tyr residues are indicated by *, Ca2+ binding sites are underlined

in grey (below the sequence) and residues which form the Zn2+

binding site in green (above the sequence).

(TIF)

Figure S11 Calcein leakage in DPPG liposomes promoted by

the addition of S100A12. TritonX-100 (black) was used to reach

100% leakage. Protein concentrations were 1 mM (red), 5 mM

(blue), and 10 mM (green).

(TIF)

Figure S12 Space filling of the homology models created for

porcine apoS100A12 (first line), Ca2+- or Zn2+ bound form and for

human S100A12 (second line), apo, Ca2+ and Zn2+-bound. Tyr18

is labeled in blue and the Tyr/Phe residue in the position 25 is

labeled in cyan, respectively.

(TIF)
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