20,889 research outputs found

    Curvature-corrected dilatonic black holes and black hole -- string transition

    Full text link
    We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling gsg_s, the situation can tentatively be interpreted as classical indication on the black hole -- string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of this theory with the S-duality symmetric dilaton function as required by the heterotic string theory.Comment: 14 pages, 2 figure

    Slow-roll inflation with a Gauss-Bonnet correction

    Full text link
    We consider slow-roll inflation for a single scalar field with an arbitrary potential and an arbitrary nonminimal coupling to the Gauss-Bonnet term. By introducing a combined hierarchy of Hubble and Gauss-Bonnet flow functions, we analytically derive the power spectra of scalar and tensor perturbations. The standard consistency relation between the tensor-to-scalar ratio and the spectral index of tensor perturbations is broken. We apply this formalism to a specific model with a monomial potential and an inverse monomial Gauss-Bonnet coupling and constrain it by the 7-year Wilkinson Microwave Anisotropy Probe data. The Gauss-Bonnet term with a positive (or negative) coupling may lead to a reduction (or enhancement) of the tensor-to-scalar ratio and hence may revive the quartic potential ruled out by recent cosmological data.Comment: 7 pages, 2 figures, RevTeX, references added, published versio

    NUT-Charged Black Holes in Gauss-Bonnet Gravity

    Full text link
    We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in dd dimensions. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter α\alpha goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield non-extremal NUT solutions to Einstein gravity having a curvature singularity at r=Nr=N in the limit % \alpha \to 0. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions with non-trivial fibration only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.Comment: 20 pages, referrence added, a few typos correcte

    Scalar field evolution in Gauss-Bonnet black holes

    Full text link
    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant Λ\Lambda and the Gauss-Bonnet coupling α\alpha is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on α\alpha, even though the black hole metric contains α\alpha as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.Comment: 10 pages, to be published in Phys. Rev.

    Kaluza-Klein black hole with negatively curved extra dimensions in string generated gravity models

    Get PDF
    We obtain a new exact black-hole solution in Einstein-Gauss-Bonnet gravity with a cosmological constant which bears a specific relation to the Gauss-Bonnet coupling constant. The spacetime is a product of the usual 4-dimensional manifold with a (n−4)(n-4)-dimensional space of constant negative curvature, i.e., its topology is locally {\ma M}^n \approx {\ma M}^4 \times {\ma H}^{n-4}. The solution has two parameters and asymptotically approximates to the field of a charged black hole in anti-de Sitter spacetime. The most interesting and remarkable feature is that the Gauss-Bonnet term acts like a Maxwell source for large rr while at the other end it regularizes the metric and weakens the central singularity.Comment: 4 pages, 2 figures, final version to appear in Physical Review D as a rapid communicatio

    Emerging Anisotropic Compact Stars in f(G,T)f(\mathcal{G},T) Gravity

    Full text link
    The possible emergence of compact stars has been investigated in the recently introduced modified Gauss-Bonnet f(G,T)f(\mathcal{G},T) gravity, where G\mathcal{G} is the Gauss-Bonnet term and T{T} is the trace of the energy-momentum tensor. Specifically, for this modified f(G,T)f(\mathcal{G}, T) theory, the analytic solutions of Krori and Barua have been applied to anisotropic matter distribution. To determine the unknown constants appearing in Krori and Barua metric, the well-known three models of the compact stars namely 4U1820-30, Her X-I, and SAX J 1808.4-3658 have been used. The analysis of the physical behavior of the compact stars has been presented and the physical features like energy density and pressure, energy conditions, static equilibrium, stability, measure of anisotropy, and regularity of the compact stars, have been discussed.Comment: 27 pages, 43 figures, 1 table, minor change

    Inhomogeneous Dust Collapse in 5D Einstein-Gauss-Bonnet Gravity

    Full text link
    We consider a Lemaitre - Tolman - Bondi type space-time in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms, and present exact solution in closed form. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms alpha > 0 completely changes the causal structure of the singularities from the analogous general relativistic case. The gravitational collapse of inhomogeneous dust in the five-dimensional Gauss-Bonnet extended Einstein equations leads to formation of a massive, but weak, timelike singularity which is forbidden in general relativity. Interestingly, this is a counterexample to three conjecture viz. cosmic censorship conjecture, hoop conjecture and Seifert's conjecture.Comment: 8 Latex Pages, 2 EPS figure

    Discussion of "Second order topological sensitivity analysis" by J. Rocha de Faria et al

    Get PDF
    The article by J. Rocha de Faria et al. under discussion is concerned with the evaluation of the perturbation undergone by the potential energy of a domain Ω\Omega (in a 2-D, scalar Laplace equation setting) when a disk BϵB_{\epsilon} of small radius ϵ\epsilon centered at a given location \hat{\boldsymbol{x}\in\Omega is removed from Ω\Omega, assuming either Neumann or Dirichlet conditions on the boundary of the small `hole' thus created. In each case, the potential energy ψ(Ωϵ)\psi(\Omega_{\epsilon}) of the punctured domain \Omega_{\epsilon}=\Omega\setminus\B_{\epsilon} is expanded about ϵ=0\epsilon=0 so that the first two terms of the perturbation are given. The first (leading) term is the well-documented topological derivative of ψ\psi. The article under discussion places, logically, its main focus on the next term of the expansion. However, it contains incorrrect results, as shown in this discussion. In what follows, equations referenced with Arabic numbers refer to those of the article under discussion.Comment: International Journal of Solids and Structures (2007) to appea
    • …
    corecore