5,609 research outputs found

    Total Chiral Symmetry Breaking during Crystallization: Who needs a "Mother Crystal"?

    Get PDF
    Processes that can produce states of broken chiral symmetry are of particular interest to physics, chemistry and biology. Chiral symmetry breaking during crystallization of sodium chlorate occurs via the production of secondary crystals of the same handedness from a single "mother crystal" that seeds the solution. Here we report that a large and "symmetric" population of D- and L-crystals moves into complete chiral purity disappearing one of the enantiomers. This result shows: (i) a new symmetry breaking process incompatible with the hypothesis of a single "mother crystal"; (ii) that complete symmetry breaking and chiral purity can be achieved from an initial system with both enantiomers. These findings demand a new explanation to the process of total symmetry breaking in crystallization without the intervention of a "mother crystal" and open the debate on this fascinating phenomenon. We present arguments to show that our experimental data can been explained with a new model of "complete chiral purity induced by nonlinear autocatalysis and recycling".Comment: 5 pages, 4 figures, Added reference

    Spin gap in the Quasi-One-Dimensional S=1/2 Antiferromagnet: Cu2(1,4-diazacycloheptane)2Cl4

    Full text link
    Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4} contains double chains of spin 1/2 Cu^{2+} ions. We report ac susceptibility, specific heat, and inelastic neutron scattering measurements on this material. The magnetic susceptibility, χ(T)\chi(T), shows a rounded maximum at T = 8 K indicative of a low dimensional antiferromagnet with no zero field magnetic phase transition. We compare the χ(T)\chi(T) data to exact diagonalization results for various one dimensional spin Hamiltonians and find excellent agreement for a spin ladder with intra-rung coupling J1=1.143(3)J_1 = 1.143(3) meV and two mutually frustrating inter-rung interactions: J2=0.21(3)J_2 = 0.21(3) meV and J3=0.09(5)J_3 = 0.09(5) meV. The specific heat in zero field is exponentially activated with an activation energy Δ=0.89(1)\Delta = 0.89(1) meV. A spin gap is also found through inelastic neutron scattering on powder samples which identify a band of magnetic excitations for 0.8<ω<1.50.8 < \hbar\omega < 1.5 meV. Using sum-rules we derive an expression for the dynamic spin correlation function associated with non-interacting propagating triplets in a spin ladder. The van-Hove singularities of such a model are not observed in our scattering data indicating that magnetic excitations in Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4} are more complicated. For magnetic fields above Hc17.2H_{c1} \simeq 7.2 T specific heat data versus temperature show anomalies indicating a phase transition to an ordered state below T = 1 K.Comment: 9 pages, 8 postscript figures, LaTeX, Submitted to PRB 8/4/97, e-mail Comments to [email protected]

    Crystal Structure and Magnetism of the Linear-Chain Copper Oxides Sr5Pb3-xBixCuO12

    Full text link
    The title quasi-1D copper oxides (0=< x =<0.4) were investigated by neutron diffraction and magnetic susceptibility studies. Polyhedral CuO4 units in the compounds were found to comprise linear-chains at inter-chain distance of approximately 10 A. The parent chain compound (x = 0), however, shows less anisotropic magnetic behavior above 2 K, although it is of substantially antiferromagnetic (mu_{eff}= 1.85 mu_{B} and Theta_{W} = -46.4 K) spin-chain system. A magnetic cusp gradually appears at about 100 K in T vs chi with the Bi substitution. The cusp (x = 0.4) is fairly characterized by and therefore suggests the spin gap nature at Delta/k_{B} ~ 80 K. The chain compounds hold electrically insulating in the composition range.Comment: To be published in PR

    The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity

    Full text link
    A theory for the structure of isothermal, self-gravitating gas spheres in pressure equilibrium in a softened gravitational field is developed. The one parameter spline softening proposed by Hernquist & Katz (1989) is used. We show that the addition of this extra scale parameter implies that the set of equilibrium solutions constitute a one-parameter family, rather than the one and only one isothermal sphere solution for Newtonian gravity. We demonstrate the perhaps somewhat surprising result that for any finite choice of softening length and temperature, it is possible to deposit an arbitrarily large mass of gas in pressure equilibrium and with a non-singular density distribution inside of r_0 for any r_0 > 0. The theoretical predictions of our models are compared with the properties of the small, massive, quasi-isothermal gas clumps which typically form in numerical Tree-SPH simulations of 'passive' galaxy formation of Milky Way sized galaxies. We find reasonable agreement despite the neglect of rotational support in the models. We comment on whether the hydrodynamical resolution in our numerical simulation of galaxy formation is sufficient, and finally we conclude that one should be cautious, when comparing results of numerical simulations involving gravitational softening and hydrodynamical smoothing, with reality.Comment: 22 pages Latex + 12 figure

    Comment on piNN Coupling from High Precision np Charge Exchange at 162 MeV

    Get PDF
    In this updated and expanded version of our delayed Comment we show that the np backward cross section, as presented by the Uppsala group, is seriously flawed (more than 25 sd.). The main reason is the incorrect normalization of the data. We show also that their extrapolation method, used to determine the charged piNN coupling constant, is a factor of about 10 less accurate than claimed by Ericson et al. The large extrapolation error makes the determination of the coupling constant by the Uppsala group totally uninteresting.Comment: 5 pages, latex2e with a4wide.sty. This is an updated and extended version of the Comment published in Phys. Rev. Letters 81, 5253 (1998

    Predicting total reaction cross sections for nucleon-nucleus scattering

    Get PDF
    Nucleon total reaction and neutron total cross sections to 300 MeV for 12C and 208Pb, and for 65 MeV spanning the mass range, are predicted using coordinate space optical potentials formed by full folding of effective nucleon-nucleon interactions with realistic nuclear ground state densities. Good to excellent agreement is found with existing data.Comment: 10 pages, 4 figure

    Elemental Analysis of Glass and Bakelite Electrodes Using PIXE Facility

    Full text link
    The evolution of particle detectors dates back to the discovery of X-rays and radioactivity in 1890s. In detector history, the Resistive Plate Chambers (RPCs) are introduced in early 1980s. An RPC is a gaseous detector made up of two parallel electrodes having high resistivity like that of glass and bakelite. Currently several high energy physics experiments are using RPC-based detector system due to robustness and simplicity of construction. In each and every experiment, RPCs have to run continuously for several years. So, it demands an in-depth characterization of the electrode materials. In the present study, an elemental analysis of locally available glass and bakelite samples is done using PIXE facility available at Panjab University Cyclotron, Chandigarh. PIXE measurements are done using 2.7 MeV proton beam incident on the electrode sample target. The constituent elements present in these electrode samples are reported.Comment: 4 pages, 1 figures, 1 table; Presented in XXII DAE-BRNS High Energy Physics Symposium 201

    Factors for Supporting Primary Care Physician Engagement With Patient Apps for Type 2 Diabetes Self-Management That Link to Primary Care: Interview Study.

    Full text link
    BACKGROUND: The health burden of type 2 diabetes can be mitigated by engaging patients in two key aspects of diabetes care: self-management and regular contact with health professionals. There is a clear benefit to integrating these aspects of care into a single clinical tool, and as mobile phone ownership increases, apps become a more feasible platform. However, the effectiveness of online health interventions is contingent on uptake by health care providers, which is typically low. There has been little research that focuses specifically on barriers and facilitators to health care provider uptake for interventions that link self-management apps to the user's primary care physician (PCP). OBJECTIVE: This study aimed to explore PCP perspectives on proposed features for a self-management app for patients with diabetes that would link to primary care services. METHODS: Researchers conducted 25 semistructured interviews. The interviewer discussed potential features that would link in with the patient's primary care services. Interviews were audio-recorded, transcribed, and coded. Framework analysis and the Consolidated Criteria for Reporting Qualitative Research checklist were employed to ensure rigor. RESULTS: Our analysis indicated that PCP attitudes toward proposed features for an app were underpinned by perceived roles of (1) diabetes self-management, (2) face-to-face care, and (3) the anticipated burden of new technologies on their practice. Theme 1 explored PCP perceptions about how an app could foster patient independence for self-management behaviors but could also increase responsibility and liability for the PCP. Theme 2 identified beliefs underpinning a commonly expressed preference for face-to-face care. PCPs perceived information was more motivating, better understood, and presented with greater empathy when delivered face to face rather than online. Theme 3 described how most PCPs anticipated an initial increase in workload while they learned to use a new clinical tool. Some PCPs accepted this burden on the basis that the change was inevitable as health care became more integrated. Others reported potential benefits were outweighed by effort to implement an app. This study also identified how app features can be positively framed, highlighting potential benefits for PCPs to maximize PCP engagement, buy-in, and uptake. For example, PCPs were more positive when they perceived that an app could facilitate communication and motivation between consultations, focus on building capacity for patient independence, and reinforce rather than replace in-person care. They were also more positive about app features that were automated, integrated with existing software, flexible for different patients, and included secondary benefits such as improved documentation. CONCLUSIONS: This study provided insight into PCP perspectives on a diabetes app integrated with primary care services. This was observed as more than a technological change; PCPs were concerned about changes in workload, their role in self-management, and the nature of consultations. Our research highlighted potential facilitators and barriers to engaging PCPs in the implementation process

    A LANDSAT study of ephemeral and perennial rangeland vegetation and soils

    Get PDF
    The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species
    corecore