3 research outputs found

    The Aeolus Mission Concept, an Innovative Mission to Study the Winds and Climate of Mars

    Get PDF
    Aeolus is a mission to provide the first set of global, seasonal, and diurnal data to characterize winds and study the climate of Mars. Aeolus measures surface and atmospheric temperatures, aerosol abundances, and Doppler shifts in atmospheric spectral lines. The payload includes a system of four of a new type of miniaturized Spatial Heterodyne Spectrometer (SHS) paired to two orthogonal viewing telescopes that can measure CO2 (daytime absorption) and O2 (day and night emission) lines in the Martian atmosphere. The Thermal Limb Sounder (TLS) instrument measures atmospheric temperature profiles and aerosol (H2O ice clouds, dust) profiles, and the Surface Radiometric Sensor Package (SuRSeP) measures the total reflected solar radiance, and surface temperatures down to 140K. These combined spectral and thermal measurements will provide a new understanding of the global energy balance, dust transport processes, and climate cycles in the Martian atmosphere. The mission concept for Aeolus consists of a single sub-100 kg secondary spacecraft in a highly inclined orbit, allowing it to pass over all local times. Aeolus attains global coverage of the surface for a mission duration of one Martian year, to capture climate patterns during each Martian season. This paper gives an overview of the Aeolus payload, spacecraft, and the methodology used to mature the Aeolus mission concept

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
    corecore