8 research outputs found

    Biomarkers of Encephalitis

    Get PDF

    In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CHI3L1 (YKL-40) is up-regulated in a variety of inflammatory conditions and cancers. We have previously reported elevated CHI3L1 concentration in the cerebrospinal fluid (CSF) of human and non-human primates with lentiviral encephalitis and using immunohistochemistry showed that CHI3L1 was associated with astrocytes.</p> <p>Methods</p> <p>In the current study CHI3L1 transcription and expression were evaluated in a variety of acute and chronic human neurological diseases.</p> <p>Results</p> <p>ELISA revealed significant elevation of CHI3L1 in the CSF of multiple sclerosis (MS) patients as well as mild elevation with aging. <it>In situ </it>hybridization (ISH) showed CHI3L1 transcription mostly associated with reactive astrocytes, that was more pronounced in inflammatory conditions like lentiviral encephalitis and MS. Comparison of CHI3L1 expression in different stages of brain infarction showed that YKL40 was abundantly expressed in astrocytes during acute phases and diminished to low levels in chronic infarcts.</p> <p>Conclusions</p> <p>Taken together, these findings demonstrate that CHI3L1 is induced in astrocytes in a variety of neurological diseases but that it is most abundantly associated with astrocytes in regions of inflammatory cells.</p

    Systemic and Brain Macrophage Infections in Relation to the Development of Simian Immunodeficiency Virus Encephalitisâ–¿

    No full text
    The brains of individuals with lentiviral-associated encephalitis contain an abundance of infected and activated macrophages. It has been hypothesized that encephalitis develops when increased numbers of infected monocytes traffic into the central nervous system (CNS) during the end stages of immunosuppression. The relationships between the infection of brain and systemic macrophages and circulating monocytes and the development of lentiviral encephalitis are unknown. We longitudinally examined the extent of monocyte/macrophage infection in blood and lymph nodes of pigtailed macaques that did or did not develop simian immunodeficiency virus encephalitis (SIVE). Compared to levels in macaques that did not develop SIVE, more ex vivo virus production was detected from monocyte-derived macrophages and nonadherent peripheral blood mononuclear cells (PBMCs) from macaques that did develop SIVE. Prior to death, there was an increase in the number of circulating PBMCs following a rise in cerebrospinal fluid viral load in macaques that did develop SIVE but not in nonencephalitic macaques. At necropsy, macaques with SIVE had more infected macrophages in peripheral organs, with the exception of lymph nodes. T cells and NK cells with cytotoxic potential were more abundant in brains with encephalitis; however, T-cell and NK-cell infiltration in SIVE and human immunodeficiency virus encephalitis was more modest than that observed in classical acute herpes simplex virus encephalitis. These findings support the hypothesis that inherent differences in host systemic and CNS monocyte/macrophage viral production are associated with the development of encephalitis

    YKL-40, a Marker of Simian Immunodeficiency Virus Encephalitis, Modulates the Biological Activity of Basic Fibroblast Growth Factor

    No full text
    Human immunodeficiency virus encephalitis causes dementia in acquired immune deficiency syndrome patients. Using proteomic analysis of postmortem cerebrospinal fluid (CSF) and brain tissue from the simian immunodeficiency virus primate model, we demonstrate here a specific increase in YKL-40 that was tightly associated with lentiviral encephalitis. Longitudinal analysis of CSF from simian immunodeficiency virus-infected pigtailed macaques showed an increase in YKL-40 concentration 2 to 8 weeks before death from encephalitis. This increase in YKL-40 correlated with an increase in CSF viral load; it may therefore represent a biomarker for the development of encephalitis. Analysis of banked human CSF from human immunodeficiency virus-infected patients also demonstrated a correlation between YKL-40 concentration and CSF viral load. In vitro studies demonstrated increased YKL-40 expression and secretion by macrophages and microglia but not by neurons or astrocytes. We found that YKL40 displaced extracellular matrix-bound basic fibroblast growth factor (bFGF) as well as inhibited the mitogenic activity of both fibroblast growth factor receptor 1-expressing BaF3 cells and bFGF-induced axonal branching in hippocampal cultures. Taken together, these findings demonstrate that during lentiviral encephalitis, YKL-40 may interfere with the biological activity of bFGF and potentially of other heparin-binding growth factors and chemokines that can affect neuronal function or survival
    corecore