77 research outputs found

    a review and some new issues on the theory of the h v technique for ambient vibrations

    Get PDF
    In spite of the Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) technique obtained by the ambient vibrations is a very popular tool, a full theoretical explanation of it has been not reached yet. A short excursus is here presented on the theoretical models explaining the H/V spectral ratio that have been development in last decades. It leads to the present two main research lines: one aims at describing the H/V curve by taking in account the whole ambient-vibration wavefield, and another just studies the Rayleigh ellipticity. For the first theoretical branch, a comparison between the most recent two models of the ambient-vibration wavefield is presented, which are the Distributed Surface Sources (DSS) one and the Diffuse Field Approach (DFA). A mention is done of the current developments of these models and of the use of the DSS for comparing the H/V spectral ratio definitions present in literature. For the second research branch, some insights about the connection between the so-called osculation points of the Rayleigh dispersion curves and the behaviour of the H/V curve are discussed

    Seismic site characterization of the Kastelli (Kissamos) Basin in northwest Crete (Greece): Assessments using ambient noise recordings

    Get PDF
    Crete is actively seismic and site response studies are needed for estimating local site conditions subjected to seismic activity. In order to collect basic data, we performed ambient noise recordings to estimate the site response of the surface and near subsurface structure of the small-scale Kastelli Basin in northwest Crete. The spatial horizontal to vertical spectral ratios (HVSR) resonance pattern of the investigated sites in the centre of the Basin consists of either one or two peaks divided into low to high frequency range in different sites as follows: (a) in some sites only one amplified peak at low frequencies (0.6–1.2 Hz), (b) in other sites only one amplified peak at medium frequencies (2.9–8.5 Hz) and (c) in yet other sites two amplified peaks in the low to high frequency range (0.6–15.5 Hz). The investigated sites are amplified in the frequency range 0.6–15.5 Hz, while the amplitude reaches to a factor of 4 in the spectral ratios. The one HVSR amplified peak at low frequencies is related to locally soft or thick Quaternary deposits. Microtremors were measured in the coastal northwest part of the Basin in a well—lithified Cretaceous limestone site characterized by fractures and faults striking predominantly in a sector NNE to NNW. Sites of one amplified peak at medium frequencies are extended from coastal northwest to southwest delineating a structure striking to NNW. The two amplified peaks are attributed to shallow subsurface heterogeneities/irregularities, locally induced by fault zones and to the overlying Quaternary deposits. Spatial HVSR variations in the frequency and HVSR shape delineate four structures striking NNE, NNW and in a sector NW to WNW, crosscutting the dense populated Basin suggesting that microtremors could be a valuable tool for providing a first approximation of fault zone delineation at least for the Kastelli-Kissamos Basin. The Basin is classified into the X soil category of the Greek Seismic Code 2000.This work was implemented through the project entitled “Interdisciplinary Multi-Scale Research of Earth-quake Physics and Seismotectonics at the Front of the Hellenic Arc (IMPACT-ARC)” in the framework of action “ARCHIMEDES III—Support of Research Teams at TEI of Crete” (MIS380353) of the Operational Program “Education and Lifelong Learning” and is co-financed by the European Union (European Social Fund) and Greek national fund

    Effects of Love Waves on Microtremor H/V Ratio

    No full text
    • …
    corecore