1,416 research outputs found
Einstein-Weyl structures and Bianchi metrics
We analyse in a systematic way the (non-)compact four dimensional
Einstein-Weyl spaces equipped with a Bianchi metric. We show that Einstein-Weyl
structures with a Class A Bianchi metric have a conformal scalar curvature of
constant sign on the manifold. Moreover, we prove that most of them are
conformally Einstein or conformally K\"ahler ; in the non-exact Einstein-Weyl
case with a Bianchi metric of the type or , we show that the
distance may be taken in a diagonal form and we obtain its explicit
4-parameters expression. This extends our previous analysis, limited to the
diagonal, K\"ahler Bianchi case.Comment: Latex file, 12 pages, a minor modification, accepted for publication
in Class. Quant. Gra
Compact Einstein-Weyl four-dimensional manifolds
We look for four dimensional Einstein-Weyl spaces equipped with a regular
Bianchi metric. Using the explicit 4-parameters expression of the distance
obtained in a previous work for non-conformally-Einstein Einstein-Weyl
structures, we show that only four 1-parameter families of regular metrics
exist on orientable manifolds : they are all of Bianchi type and
conformally K\"ahler ; moreover, in agreement with general results, they have a
positive definite conformal scalar curvature. In a Gauduchon's gauge, they are
compact and we obtain their topological invariants. Finally, we compare our
results to the general analyses of Madsen, Pedersen, Poon and Swann : our
simpler parametrisation allows us to correct some of their assertions.Comment: Latex file, 13 pages, an important reference added and a critical
discussion of its claims offered, others minor modification
Corrosion in MEA units for CO2 capture: Pilot plant studies
AbstractAmong the technologies that are under study for CO2 capture from flue gas, the separation process using monoethanolamine (MEA) could be the first to be available for immediate industrial applications in the next few years. The principles of CO2 separation using alkanolamines were discovered nearly a century ago. The process has been applied successfully for several decades in areas such as natural gas processing or coal gasification. The application to flue gas treatment was introduced in the early 1980s, but was not widespread.In such industrial processes, corrosion represents one of the major operational problems. For the capture of CO2 from flue gas using MEA, the problem is even more critical since (i) MEA is one of the most corrosive amine when compared to secondary or tertiary amines that are also used for gas sweetening, and (ii) flue gas contains a certain amount of oxygen, which can react with the amine to form corrosive degradation products.In the framework of the CAPRICE project, which is an International cooperation and exchange project supported by the EU, The International Test centre for CO2 Capture from the University of Regina (CA) and IFP (F) have shared their experience on corrosion monitoring from CO2 capture pilot plants. The first pilot plant facility is owned by ITC. It has a capacity to capture 1 ton CO2/day from a natural gas burner. It is equipped with corrosion control instruments and other monitoring systems. The second pilot plant is located in a coal fired power station in Esbjerg (DK). It was built with the financial support of the UE through the CASTOR project under the lead of IFP. It has been in operation since early 2006, and has a capacity of 1.0 ton CO2/hour. It is equipped with weight loss coupons for corrosion evaluation at different locations in the process.This paper presents the major results of corrosion testing from both pilot plants under MEA operation. It appeared from both pilot plants that the areas most susceptible to corrosion were the stripper inlet and outlet, with corrosion rates around 1 mm.year−1 for carbon steel
Witnessing eigenstates for quantum simulation of Hamiltonian spectra
The efficient calculation of Hamiltonian spectra, a problem often intractable
on classical machines, can find application in many fields, from physics to
chemistry. Here, we introduce the concept of an "eigenstate witness" and
through it provide a new quantum approach which combines variational methods
and phase estimation to approximate eigenvalues for both ground and excited
states. This protocol is experimentally verified on a programmable silicon
quantum photonic chip, a mass-manufacturable platform, which embeds entangled
state generation, arbitrary controlled-unitary operations, and projective
measurements. Both ground and excited states are experimentally found with
fidelities >99%, and their eigenvalues are estimated with 32-bits of precision.
We also investigate and discuss the scalability of the approach and study its
performance through numerical simulations of more complex Hamiltonians. This
result shows promising progress towards quantum chemistry on quantum computers.Comment: 9 pages, 4 figures, plus Supplementary Material [New version with
minor typos corrected.
Violation of the Cauchy-Schwarz inequality with matter waves
The Cauchy-Schwarz (CS) inequality -- one of the most widely used and
important inequalities in mathematics -- can be formulated as an upper bound to
the strength of correlations between classically fluctuating quantities.
Quantum mechanical correlations can, however, exceed classical bounds.Here we
realize four-wave mixing of atomic matter waves using colliding Bose-Einstein
condensates, and demonstrate the violation of a multimode CS inequality for
atom number correlations in opposite zones of the collision halo. The
correlated atoms have large spatial separations and therefore open new
opportunities for extending fundamental quantum-nonlocality tests to ensembles
of massive particles.Comment: Final published version (with minor changes). 5 pages, 3 figures,
plus Supplementary Materia
Supersymmetric sigma models and the 't Hooft instantons
Witten's linear sigma model for ADHM instantons possesses a natural
supersymmetry. We study generalizations of the infrared limit of the model that
are invariant under supersymmetry. In the case of four space-time
dimensions a background with a conformally flat metric and torsion is required.
The geometry is specified by a single real scalar function satisfying Laplace's
equation. It gives rise to 't Hooft instantons for the gauge group ,
instead of the general ADHM instantons for an gauge group in the case
.Comment: 11 pages, Latex fil
Four small puzzles that Rosetta doesn't solve
A complete macromolecule modeling package must be able to solve the simplest
structure prediction problems. Despite recent successes in high resolution
structure modeling and design, the Rosetta software suite fares poorly on
deceptively small protein and RNA puzzles, some as small as four residues. To
illustrate these problems, this manuscript presents extensive Rosetta results
for four well-defined test cases: the 20-residue mini-protein Trp cage, an even
smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease
inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies,
several lines of evidence indicate that conformational sampling is not the
major bottleneck in modeling these small systems. Instead, approximations and
omissions in the Rosetta all-atom energy function currently preclude
discriminating experimentally observed conformations from de novo models at
atomic resolution. These molecular "puzzles" should serve as useful model
systems for developers wishing to make foundational improvements to this
powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special
Collectio
Successfully dating rock art in Southern Africa using improved sampling methods and new characterization and pretreatment protocols
©2016 University of Arizona. This is the Author Accepted Manuscript.
Please refer to any applicable publisher terms of use.Worldwide, dating rock art is difficult to achieve because of the frequent lack of datable material and the difficulty of removing contamination from samples. Our research aimed to select the paints that would be the most likely to be successfully radiocarbon dated and to estimate the quantity of paint needed depending on the nature of the paint and the weathering and alteration products associated with it. To achieve this aim, a two-step sampling strategy, coupled with a multi-instrument characterization (including SEM-EDS, Raman spectroscopy, and FTIR spectroscopy analysis) and a modified acid-base-acid (ABA) pretreatment, was created. In total, 41 samples were dated from 14 sites in three separate regions of southern Africa. These novel protocols ensure that the 14C chronology produced was robust and could also be subsequently applied to different regions with possible variations in paint preparation, geology, weathering conditions, and contaminants
Record-Making, Research, and Removal: Mitigating Impacts on Rock Art in a CRM Context in Southern Africa—the Case of the Metolong Dam, Lesotho
This paper reports on the steps taken to mitigate the impact of the Metolong Dam (Lesotho) on the rock art present within the catchment of its associated reservoir. Mitigation took four major forms: comprehensive survey and documentation, including both photography and tracing; pigment characterization and radiocarbon dating; exploration of the ongoing significance of rock art as a form of living heritage for people living in the vicinity; and removal of selected panels for permanent safekeeping. These steps are placed within the wider context of other cultural heritage management projects in Africa and their success evaluated. Recommendations are made for how similar work should be undertaken in future
- …