613 research outputs found
Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates
In situ observations Of NO_2, NO, NO_y, ClONO_2, OH, O_3, aerosol surface area, spectrally resolved solar radiation, pressure and temperature obtained from the ER-2 aircraft during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) experiments are used to examine the factors controlling the fast photochemistry connecting NO and NO_2 and the slower chemistry connecting NO_x and HNO_3. Our analysis uses “chemical coordinates” to examine gradients of the difference between a model and precisely calibrated measurements to provide a quantitative assessment of the accuracy of current photochemical models. The NO/NO_2 analysis suggests that reducing the activation energy for the NO+O_3 reaction by 1.7 kJ/mol will improve model representation of the temperature dependence of the NO/NO_2 ratio in the range 215–235 K. The NO_x/HNO_3 analysis shows that systematic errors in the relative rate coefficients used to describe NO_x loss by the reaction OH + NO_2 → HNO_3 and by the reaction set NO_2 + O_3 → NO_3; NO_2 + NO_3 → N_(2)O_5; N_(2)O_5 + H_(2)O → 2HNO_3 are in error by +8.4% (+30/−45%) (OH+NO_2 too fast) in models using the Jet Propulsion Laboratory 1997 recommendations [DeMore et al., 1997]. Models that use recommendations for OH+NO2 and OH+HNO_3 based on reanalysis of recent and past laboratory measurements are in error by 1.2% (+30/−45%) (OH+NO_2 too slow). The +30%/−45% error limit reflects systematic uncertainties, while the statistical uncertainty is 0.65%. This analysis also shows that the POLARIS observations only modestly constrain the relative rates of the major NO_x production reactions HNO3 + OH → H_(2)O + NO_3 and HNO_3 + hν → OH + NO_2. Even under the assumption that all other aspects of the model are perfect, the POLARIS observations only constrain the rate coefficient for OH+HNO_3 to a range of 65% around the currently recommended value
Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO_2]/[HCl] during POLARIS
We examine inorganic chlorine (Cl_y,) partitioning in the summer lower stratosphere using in situ ER-2 aircraft observations made during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) campaign. New steady state and numerical models estimate [ClONO_2]/[HCl] using currently accepted photochemistry. These models are tightly constrained by observations with OH (parameterized as a function of solar zenith angle) substituting for modeled HO_2 chemistry. We find that inorganic chlorine photochemistry alone overestimates observed [ClONO_2]/[HCl] by approximately 55–60% at mid and high latitudes. On the basis of POLARIS studies of the inorganic chlorine budget, [ClO]/[ClONO_2], and an intercomparison with balloon observations, the most direct explanation for the model-measurement discrepancy in Cl_y, partitioning is an error in the reactions, rate constants, and measured species concentrations linking HCl and ClO (simulated [ClO]/[HCl] too high) in combination with a possible systematic error in the ER-2 ClONO_2 measurement (too low). The high precision of our simulation (±15% 1σ for [ClONO_2]/[HCl], which is compared with observations) increases confidence in the observations, photolysis calculations, and laboratory rate constants. These results, along with other findings, should lead to improvements in both the accuracy and precision of stratospheric photochemical models
Mathematical Properties of a New Levin-Type Sequence Transformation Introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. I. Algebraic Theory
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la [J. Math. Phys. \textbf{44}, 962
- 968 (2003)] introduced in connection with the summation of the divergent
perturbation expansion of the hydrogen atom in an external magnetic field a new
sequence transformation which uses as input data not only the elements of a
sequence of partial sums, but also explicit estimates
for the truncation errors. The explicit
incorporation of the information contained in the truncation error estimates
makes this and related transformations potentially much more powerful than for
instance Pad\'{e} approximants. Special cases of the new transformation are
sequence transformations introduced by Levin [Int. J. Comput. Math. B
\textbf{3}, 371 - 388 (1973)] and Weniger [Comput. Phys. Rep. \textbf{10}, 189
- 371 (1989), Sections 7 -9; Numer. Algor. \textbf{3}, 477 - 486 (1992)] and
also a variant of Richardson extrapolation [Phil. Trans. Roy. Soc. London A
\textbf{226}, 299 - 349 (1927)]. The algebraic theory of these transformations
- explicit expressions, recurrence formulas, explicit expressions in the case
of special remainder estimates, and asymptotic order estimates satisfied by
rational approximants to power series - is formulated in terms of hitherto
unknown mathematical properties of the new transformation introduced by
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. This leads to a considerable
formal simplification and unification.Comment: 41 + ii pages, LaTeX2e, 0 figures. Submitted to Journal of
Mathematical Physic
Understanding the Relationship Between Perceived Quality Cues and Quality Attributes in the Purchase of Meat in Malaysia
This study utilizes the Total Food Quality Model to gain a better understanding of how Malaysian consumers make their decision to purchase fresh/chilled meat. We examine the association between quality cues and desired values (quality attributes) with regard to food that is guaranteed Halal, safe to eat, healthy and nutritious, has a good taste, represents good value for money, and is produced in a way that protects the environment and worker welfare. The findings reveal that different quality cues assume different levels of importance when pursuing different desired values
Comparison of modeled and observed values of NO_2 and JNO_2 during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission
Stratospheric measurements of NO, NO_(2), O_(3), ClO, and HO_(2) were made during spring, early summer, and late summer in the Arctic region during 1997 as part of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) field campaign. In the sunlit atmosphere, NO_(2) and NO are in steady state through NO2 photolysis and reactions involving O_(3), ClO, BrO, and HO_(2). By combining observations of O_(3), ClO, and HO_(2), observed and modeled values of the NO_(2) photolysis rate coefficient (JNO_(2)), and model estimates of BrO, several comparisons are made between steady state and measured values of both NO_(2) and JNO_(2). An apparent seasonal dependence in discrepancies between calculated and measured values was found; however, a source for this dependence could not be identified. Overall, the mean linear fits in the various comparisons show agreement within 19%, well within the combined uncertainties (±50 to 70%). These results suggest that photochemistry controlling the NO_(2)/NO abundance ratio is well represented throughout much of the sunlit lower stratosphere. A reduction in the uncertainty of laboratory determinations of the rate coefficient of NO + O_(3) → NO_(2) + O_(2) would aid future analyses of these or similar atmospheric observations
Higgs After the Discovery: A Status Report
Recently, the ATLAS and CMS collaborations have announced the discovery of a
125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and
2012 LHC and Tevatron Higgs data in the context of simplified new physics
models, paying close attention to models which can enhance the diphoton rate
and allow for a natural weak-scale theory. Combining the available LHC and
Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels,
we derive constraints on the effective low-energy theory of the Higgs boson. We
map several simplified scenarios to the effective theory, capturing numerous
new physics models such as supersymmetry, composite Higgs, dilaton. We further
study models with extended Higgs sectors which can naturally enhance the
diphoton rate. We find that the current Higgs data are consistent with the
Standard Model Higgs boson and, consequently, the parameter space in all models
which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and
doublet-singlet bugs corrected, references added; v3: ATLAS WW channel
included, comments and references adde
Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases
For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient’s data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe
A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: Building a Treatabolome
Background: Rare diseases are individually rare but globally affect around 6% of the population, and in over 70% of cases are genetically determined. Their rarity translates into a delayed diagnosis, with 25% of patients waiting 5 to 30 years for one. It is essential to raise awareness of patients and clinicians of existing gene and variant-specific therapeutics at the time of diagnosis to avoid that treatment delays add up to the diagnostic odyssey of rare diseases' patients and their families. Aims: This paper aims to provide guidance and give detailed instructions on how to write homogeneous systematic reviews of rare diseases' treatments in a manner that allows the capture of the results in a computer-accessible form. The published results need to comply with the FAIR guiding principles for scientific data management and stewardship to facilitate the extraction of datasets that are easily transposable into machine-actionable information. The ultimate purpose is the creation of a database of rare disease treatments ("Treatabolome") at gene and variant levels as part of the H2020 research project Solve-RD. Results: Each systematic review follows a written protocol to address one or more rare diseases in which the authors are experts. The bibliographic search strategy requires detailed documentation to allow its replication. Data capture forms should be built to facilitate the filling of a data capture spreadsheet and to record the application of the inclusion and exclusion criteria to each search result. A PRISMA flowchart is required to provide an overview of the processes of search and selection of papers. A separate table condenses the data collected during the Systematic Review, appraised according to their level of evidence. Conclusions: This paper provides a template that includes the instructions for writing FAIR-compliant systematic reviews of rare diseases' treatments that enables the assembly of a Treatabolome database that complement existing diagnostic and management support tools with treatment awareness data
Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast
Tracking of ancestral histone proteins over multiple generations of genome
replication in yeast reveals that old histones move along genes from 3′
toward 5′ over time, and that maternal histones move up to around 400 bp
during genomic replication
- …