1,184 research outputs found

    Exact Ward-Takahashi identity for the lattice N=1 Wess-Zumino model

    Full text link
    The lattice Wess-Zumino model written in terms of the Ginsparg-Wilson relation is invariant under a generalized supersymmetry transformation which is determined by an iterative procedure in the coupling constant. By studying the associated Ward-Takahashi identity up to order g2g^2 we show that this lattice supersymmetry automatically leads to restoration of continuum supersymmetry without fine tuning. In particular, the scalar and fermion renormalization wave functions coincide.Comment: 6 pages, 5 figures, Talk given at QG05, Cala Gonone, Sardinia, Italy. 12-16 September 200

    The beta functions of a scalar theory coupled to gravity

    Full text link
    We study a scalar field theory coupled to gravity on a flat background, below Planck's energy. Einstein's theory is treated as an effective field theory. Within the context of Wilson's renormalization group, we compute gravitational corrections to the beta functions and the anomalous dimension of the scalar field, taking into account threshold effects.Comment: 13 pages, plainTe

    Multivalued Fields on the Complex Plane and Conformal Field Theories

    Full text link
    In this paper a class of conformal field theories with nonabelian and discrete group of symmetry is investigated. These theories are realized in terms of free scalar fields starting from the simple b−cb-c systems and scalar fields on algebraic curves. The Knizhnik-Zamolodchikov equations for the conformal blocks can be explicitly solved. Besides of the fact that one obtains in this way an entire class of theories in which the operators obey a nonstandard statistics, these systems are interesting in exploring the connection between statistics and curved space-times, at least in the two dimensional case.Comment: (revised version), 30 pages + one figure (not included), (requires harvmac.tex), LMU-TPW 92-1

    Effective average action in statistical physics and quantum field theory

    Get PDF
    An exact renormalization group equation describes the dependence of the free energy on an infrared cutoff for the quantum or thermal fluctuations. It interpolates between the microphysical laws and the complex macroscopic phenomena. We present a simple unified description of critical phenomena for O(N)-symmetric scalar models in two, three or four dimensions, including essential scaling for the Kosterlitz-Thouless transition.Comment: 34 pages,5 figures,LaTe

    Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras

    Get PDF
    Yeast and cancer cells share the unusual characteristic of favoring fermentation of sugar over respiration. We now reveal an evolutionary conserved mechanism linking fermentation to activation of Ras, a major regulator of cell proliferation in yeast and mammalian cells, and prime proto-oncogene product. A yeast mutant (tps1Δ) with overactive influx of glucose into glycolysis and hyperaccumulation of Fru1,6bisP, shows hyperactivation of Ras, which causes its glucose growth defect by triggering apoptosis. Fru1,6bisP is a potent activator of Ras in permeabilized yeast cells, likely acting through Cdc25. As in yeast, glucose triggers activation of Ras and its downstream targets MEK and ERK in mammalian cells. Biolayer interferometry measurements show that physiological concentrations of Fru1,6bisP stimulate dissociation of the pure Sos1/H-Ras complex. Thermal shift assay confirms direct binding to Sos1, the mammalian ortholog of Cdc25. Our results suggest that the Warburg effect creates a vicious cycle through Fru1,6bisP activation of Ras, by which enhanced fermentation stimulates oncogenic potency. © 2017 The Author(s)

    Exact and Truncated Dynamics in Nonequilibrium Field Theory

    Get PDF
    Nonperturbative dynamics of quantum fields out of equilibrium is often described by the time evolution of a hierarchy of correlation functions, using approximation methods such as Hartree, large N, and nPI-effective action techniques. These truncation schemes can be implemented equally well in a classical statistical system, where results can be tested by comparison with the complete nonlinear evolution obtained by numerical methods. For a 1+1 dimensional scalar field we find that the early-time behaviour is reproduced qualitatively by the Hartree dynamics. The inclusion of direct scattering improves this to the quantitative level. We show that the emergence of nonthermal temperature profiles at intermediate times can be understood in terms of the fixed points of the evolution equations in the Hartree approximation. The form of the profile depends explicitly on the initial ensemble. While the truncated evolution equations do not seem to be able to get away from the fixed point, the full nonlinear evolution shows thermalization with a (surprisingly) slow relaxation.Comment: 30 pages with 12 eps figures, minor changes; to appear in Phys.Rev.

    Running coupling in Yang-Mills theory - a flow equation study -

    Get PDF
    The effective average action of Yang-Mills theory is analyzed in the framework of exact renormalization group flow equations. Employing the background-field method and using a cutoff that is adjusted to the spectral flow, the running of the gauge coupling is obtained on all scales. In four dimensions and for the gauge groups SU(2) and SU(3), the coupling approaches a fixed point in the infrared.Comment: 35 pages, 3 figures, v2: References added, minor improvements, version to appear in PR

    Tunneling in quantum cosmology: numerical study of particle creation

    Full text link
    We consider a minisuperspace model for a closed universe with small and positive cosmological constant, filled with a massive scalar field conformally coupled to gravity. In the quantum version of this model, the universe may undergo a tunneling transition through an effective barrier between regions of small and large scale factor. We solve numerically the minisuperspace Wheeler--De Witt equation with tunneling boundary conditions for the wave function of the universe, and find that tunneling in quantum cosmology is quite different from that in quantum mechanics. Namely, the matter degree of freedom gets excited under the barrier, provided its interaction with the scale factor is not too weak, and makes a strong back reaction onto tunneling. In the semiclassical limit of small values of cosmological constant, the matter energy behind the barrier is close to the height of the barrier: the system ``climbs up'' the barrier, and then evolves classically from its top. These features are even more pronounced for inhomogeneous modes of matter field. Extrapolating to field theory we thus argue that high momentum particles are copiously created in the tunneling process. Nevertheless, we find empirical evidence for the semiclassical-type scaling with the cosmological constant of the wave function under and behind the barrier.Comment: 29 pages, 17 figure

    Renormalization of the Hamiltonian and a geometric interpretation of asymptotic freedom

    Full text link
    Using a novel approach to renormalization in the Hamiltonian formalism, we study the connection between asymptotic freedom and the renormalization group flow of the configuration space metric. It is argued that in asymptotically free theories the effective distance between configuration decreases as high momentum modes are integrated out.Comment: 22 pages, LaTeX, no figures; final version accepted in Phys.Rev.D; added reference and appendix with comment on solution of eq. (9) in the tex

    Features of Clinical Complexity in European Patients With Atrial Fibrillation: A Report From a European Observational Prospective AF Registry

    Get PDF
    There is increasing concern regarding impact of clinical complexity in patients with atrial fibrillation (AF). We explored the impact of different clinical complexity features in AF patients. We analyzed patients from a prospective, observational, multicenter Europe-wide AF registry. Features of clinical complexity among patients with CHA2DS2-VASc ≄2 were: (1) history of bleeding; (2) frailty; (3) chronic kidney disease (CKD); (4) ≄2 features. A total of 10,169 patients were analyzed. Of these, 141 (1.4%) had history of bleeding, 954 (9.4%) were frail, 1767 (17.4%) had CKD and 1253 (12.3%) had ≄2 features. All features of clinical complexity were less treated with OAC. History of bleeding (HR 1.94, 95% CI 1.32-2.85), frailty (HR 1.38, 95% CI 1.11-1.71), CKD (HR 1.50, 95% 1.28-1.75) and ≄2 features (HR 2.08, 95% CI 1.73-2.51) were associated with outcomes. Presence of features of clinical complexity is associated with lower use of OAC and higher risk of outcomes
    • 

    corecore