26 research outputs found

    The little finger ulnar palmar digital artery perforator flap: anatomical basis

    Get PDF
    PURPOSE: The aim of this study was to explore the cutaneous vascularization of the hypothenar region and investigate the anatomical basis for perforator propeller flaps for coverage of the flexor aspect of the little finger. METHODS: The area between the pisiform and the base of the little finger was studied in 14 hands of fresh cadavers injected with red latex. An oval flap 1.5 cm large was raised along the axis between these two points. Perforators going into the flap were dissected up to their origin from the ulnar palmar digital artery of the little finger, and their distance from the proximal edge of the A1 pulley was recorded. RESULTS: The mean number of perforator arteries entering the flap was 5.8 (range 4-8). A constant sizeable perforator was identified within 0.7 cm from the proximal margin of the A1 pulley in all 14 specimens. In the majority of cases (64 %), the most distal perforator was located at this level. Dissection of the flap was carried out suprafascially on the most distal perforator and 180° rotation allowed the flap to reach the flexor surface of the fifth finger. The donor site was closed primarily. CONCLUSION: Distal perforators of the ulnar palmar digital artery of the little finger are constantly found. Our anatomical findings support the possibility of raising a propeller perforator flap from the hypothenar region for coverage of the flexor aspect of the little finger. Its clinical application could provide a quick and straightforward single-stage option with a negligible donor-site morbidity for reconstruction of such defects

    Improved clinical investigation and evaluation of high-risk medical devices: the rationale and objectives of CORE-MD (Coordinating Research and Evidence for Medical Devices)

    Get PDF
    : In the European Union (EU) the delivery of health services is a national responsibility but there are concerted actions between member states to protect public health. Approval of pharmaceutical products is the responsibility of the European Medicines Agency, whereas authorizing the placing on the market of medical devices is decentralized to independent 'conformity assessment' organizations called notified bodies. The first legal basis for an EU system of evaluating medical devices and approving their market access was the medical device directives, from the 1990s. Uncertainties about clinical evidence requirements, among other reasons, led to the EU Medical Device Regulation (2017/745) that has applied since May 2021. It provides general principles for clinical investigations but few methodological details-which challenges responsible authorities to set appropriate balances between regulation and innovation, pre- and post-market studies, and clinical trials and real-world evidence. Scientific experts should advise on methods and standards for assessing and approving new high-risk devices, and safety, efficacy, and transparency of evidence should be paramount. The European Commission recently awarded a Horizon 2020 grant to a consortium led by the European Society of Cardiology and the European Federation of National Associations of Orthopaedics and Traumatology, that will review methodologies of clinical investigations, advise on study designs, and develop recommendations for aggregating clinical data from registries and other real-world sources. The CORE-MD project (Coordinating Research and Evidence for Medical Devices) will run until March 2024; here we describe how it may contribute to the development of regulatory science in Europe

    On the role of hemodynamics in predicting rupture of the abdominal aortic aneurysm

    No full text
    Hemodynamics plays a crucial role in the growth of an abdominal aortic aneurysm (AAA) and its possible rupture. Due to the serious consequences that arise from the aneurysm rupture, the ability to predict its evolution and the need for surgery are of primary importance in the medical field. Furthermore, the presence of intraluminal thrombus (ILT) strongly affects the evolution of the pathology. In this study, we analyzed the influence of hemodynamics on the growth and possible rupture of AAAs. Numerical investigations of pulsatile non-Newtonian blood flow were performed in six patient-specific AAAs reconstructed from diagnostic images, having different sizes and shapes, and with or without ILT. Wall shear stress and vorticity distribution in the bulge and their evolution during the cardiac cycle were analyzed. The results indicate that blood flow dynamics acts synergistically with atherosclerotic degeneration in the development of the disease. The high surface complexity and tortuosity of the aneurysms significantly affect the blood motion, and the presence of inflection in the aneurysm centerline has a noticeable effect on the vortex dynamics. Links between regions of slow recirculating flows, low values of time-averaged wall shear stress, high values of oscillatory shear index, and zones of ILT deposition were found. In the absence of ILT, possible thrombus accumulation areas and consequent aneurysm growth were identified. The findings of this study highlight the importance of hemodynamics in assessing the vulnerability of the aortic wall and underline the crucial role of patient-specific investigations in predicting the rupture of individual aneurysms
    corecore