648 research outputs found
Practical considerations for the ion channel free-electron laser
The ion-channel laser (ICL) has been proposed as an alternative to the free-electron laser (FEL), replacing the deflection of electrons by the periodic magnetic field of an undulator with the periodic betatron motion in an ion channel. Ion channels can be generated by passing dense energetic electron bunches or intense laser pulses through plasma. The ICL has potential to replace FELs based on magnetic undulators, leading to very compact coherent X-ray sources. In particular, coupling the ICL with a laser plasma wakefield accelerator would reduce the size of a coherent light source by several orders of magnitude. An important difference between FEL and ICL is the wavelength of transverse oscillations: In the former it is fixed by the undulator period, whereas in the latter it depends on the betatron amplitude, which therefore has to be treated as variable. Even so, the resulting equations for the ICL are formally similar to those for the FEL with space charge taken into account, so that the well-developed formalism for the FEL can be applied. The amplitude dependence leads to additional requirements compared to the FEL, e.g. a small spread of betatron amplitudes. We shall address these requirements and the resulting practical considerations for realizing an ICL, and give parameters for operation at UV fundamental wavelength, with harmonics extending into X-rays
Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies
We use spectroscopic observations of a sample of 82 HII regions in 76 blue
compact galaxies to determine the primordial helium abundance Yp and the slope
dY/dZ from the Y-O/H linear regression. To improve the accuracy of the dY/dZ
measurement, we have included new spectrophotometric observations of 33 HII
regions which span a large metallicity range, with oxygen abundance 12+log(O/H)
varying between 7.43 and 8.30 (Zsun/30<Z<Zsun/4). For a subsample of 7 HII
regions, we derive the He mass fraction taking into account known systematic
effects, including collisional and fluorescent enhancements of HeI emission
lines, collisional excitation of hydrogen emission, underlying stellar HeI
absorption and the difference between the temperatures Te(HeII) in the He^+
zone and Te(OIII) derived from the collisionally excited [OIII] lines. We find
that the net result of all the systematic effects combined is small, changing
the He mass fraction by less than 0.6%. By extrapolating the Y vs. O/H linear
regression to O/H=0 for 7 HII regions of this subsample, we obtain
Yp=0.2421+/-0.0021 and dY/dO=5.7+/-1.8, which corresponds to dY/dZ=3.7+/-1.2,
assuming the oxygen mass fraction to be O=0.66Z. In the framework of the
standard Big Bang nucleosynthesis theory, this Yp corresponds to Omega_b h^2 =
0.012^+0.003_-0.002, where h is the Hubble constant in units of 100 km/s/Mpc.
This is smaller at the 2sigma level than the value obtained from recent
deuterium abundance and microwave background radiation measurements. The linear
regression slope dY/dO=4.3+/-0.7 (corresponding to dY/dZ=2.8+/-0.5) for the
whole sample of 82 HII regions is similar to that derived for the subsample of
7 HII regions, although it has a considerably smaller uncertainty.Comment: 53 pages, 3 Postscript figures, accepted for publication in the
Astrophysical Journa
Resonant-Cavity-Induced Phase Locking and Voltage Steps in a Josephson Array
We describe a simple dynamical model for an underdamped Josephson junction
array coupled to a resonant cavity. From numerical solutions of the model in
one dimension, we find that (i) current-voltage characteristics of the array
have self-induced resonant steps (SIRS), (ii) at fixed disorder and coupling
strength, the array locks into a coherent, periodic state above a critical
number of active Josephson junctions, and (iii) when active junctions are
synchronized on an SIRS, the energy emitted into the resonant cavity is
quadratic with . All three features are in agreement with a recent
experiment [Barbara {\it et al}, Phys. Rev. Lett. {\bf 82}, 1963 (1999)]}.Comment: 4 pages, 3 eps figures included. Submitted to PRB Rapid Com
Manipulation of Cold Atomic Collisions by Cavity QED Effects
We show how the dynamics of collisions between cold atoms can be manipulated
by a modification of spontaneous emission times. This is achieved by placing
the atomic sample in a resonant optical cavity. Spontaneous emission is
enhanced by a combination of multiparticle entanglement together with a higher
density of modes of the modified vacuum field, in a situation akin to
superradiance. A specific situation is considered and we show that this effect
can be experimentally observed as a large suppression in trap-loss rates.Comment: RevTex, 2 EPS figures; scheduled for Phys. Rev. Lett. 19 Feb 01, with
minor change
Lithium in Blanco1: Implications for Stellar Mixing
We obtain lithium abundances for G and K stars in Blanco 1, an open cluster
with an age similar to, or slightly younger than, the Pleiades. We critically
examine previous spectroscopic abundance analyses of Blanco 1 and conclude that
while there were flaws in earlier work, it is likely that Blanco 1 is close in
overall metallicity to the older Hyades cluster and more metal-rich than the
Pleiades. However, we find Blanco 1 has Li abundances and rotation rates
similar to the Pleiades, contradicting predictions from standard stellar
evolution models, in which convective pre-main sequence (PMS) Li depletion
should increase rapidly with metallicity. If the high metallicity of Blanco 1
is subsequently confirmed, our observations imply (1) that a currently unknown
mechanism severely inhibits PMS Li depletion, (2) that additional non-standard
mixing modes, such as those driven by rotation and angular momentum loss, are
then responsible for main sequence Li depletion between the ages of Blanco 1
and the Hyades, and (3) that in clusters younger than the Hyades, metallicity
plays only a minor role in determining the amount of Li depletion among G and K
stars. These conclusions suggest that Li abundance remains a useful age
indicator among young (less than 700 Myr) stars even when metallicities are
unknown. If non-standard mixing is effective in Population I stars, the
primordial Li abundance could be significantly larger than present day
Population II Li abundances, due to prior Li depletion.Comment: 18 pages, 3 figs. To appear in ApJ Vol. 511 (Jan 20 1999
The Revival of Galactic Cosmic Ray Nucleosynthesis?
Because of the roughly linear correlation between Be/H and Fe/H in low
metallicity halo stars, it has been argued that a ``primary'' component in the
nucleosynthesis of Be must be present in addition to the ``secondary''
component from standard Galactic cosmic ray nucleosynthesis. In this paper we
critically re-evaluate the evidence for the primary versus secondary character
of Li, Be, and B evolution, analyzing both in the observations and in Galactic
chemical evolution models. While it appears that [Be/H] versus [Fe/H] has a
logarithmic slope near 1, it is rather the Be-O trend that directly arises from
the physics of spallation production. Using new abundances for oxygen in halo
stars based on UV OH lines, we find that the Be-O slope has a large uncertainty
due to systematic effects, rendering it difficult to distinguish from the data
between the secondary slope of 2 and the primary slope of 1. The possible
difference between the Be-Fe and Be-O slopes is a consequence of the variation
in O/Fe versus Fe: recent data suggests a negative slope rather than zero
(i.e., Fe O) as is often assumed. In addition to a phenomenological
analysis of Be and B evolution, we have also examined the predicted LiBeB, O,
and Fe trends in Galactic chemical evolution models which include outflow.
Based on our results, it is possible that a good fit to the LiBeB evolution
requires only traditional the Galactic cosmic ray spallation, and the (primary)
neutrino-process contribution to B11. We thus suggest that these two processes
might be sufficient to explain Li6, Be, and B evolution in the Galaxy, without
the need for an additional primary source of Be and B.Comment: 25 pages, latex, 8 ps figures, figure 1 correcte
Dynamics of a Josephson Array in a Resonant Cavity
We derive dynamical equations for a Josephson array coupled to a resonant
cavity by applying the Heisenberg equations of motion to a model Hamiltonian
described by us earlier [Phys. Rev. B {\bf 63}, 144522 (2001); Phys. Rev. B
{\bf 64}, 179902 (E)]. By means of a canonical transformation, we also show
that, in the absence of an applied current and dissipation, our model reduces
to one described by Shnirman {\it et al} [Phys. Rev. Lett. {\bf 79}, 2371
(1997)] for coupled qubits, and that it corresponds to a capacitive coupling
between the array and the cavity mode. From extensive numerical solutions of
the model in one dimension, we find that the array locks into a coherent,
periodic state above a critical number of active junctions, that the
current-voltage characteristics of the array have self-induced resonant steps
(SIRS's), that when active junctions are synchronized on a SIRS, the
energy emitted into the resonant cavity is quadratic in , and that when a
fixed number of junctions is biased on a SIRS, the energy is linear in the
input power. All these results are in agreement with recent experiments. By
choosing the initial conditions carefully, we can drive the array into any of a
variety of different integer SIRS's. We tentatively identify terms in the
equations of motion which give rise to both the SIRS's and the coherence
threshold. We also find higher-order integer SIRS's and fractional SIRS's in
some simulations. We conclude that a resonant cavity can produce threshold
behavior and SIRS's even in a one-dimensional array with appropriate
experimental parameters, and that the experimental data, including the coherent
emission, can be understood from classical equations of motion.Comment: 15 pages, 10 eps figures, submitted to Phys. Rev.
Super-radiant light scattering from trapped Bose Einstein condensates
We propose a new formulation for atomic side mode dynamics from super-radiant
light scattering of trapped atoms. A detailed analysis of the recently observed
super-radiant light scattering from trapped bose gases [S. Inouye {\it et al.},
Science {\bf 285}, 571 (1999)] is presented. We find that scattered light
intensity can exhibit both oscillatory and exponential growth behaviors
depending on densities, pump pulse characteristics, temperatures, and geometric
shapes of trapped gas samples. The total photon scattering rate as well as the
accompanied matter wave amplification depends explicitly on atom number
fluctuations in the condensate. Our formulation allows for natural and
transparent interpretations of subtle features in the MIT data, and provides
numerical simulations in good agreement with all aspects of the experimental
observations.Comment: 24 pages,16 figures, submitted to Phys.Rev.
Nitrogen Abundances in Damped Ly alpha Galaxies
Nitrogen abundances have been derived in Damped Ly alpha (DLA) galaxies at
Zabs = 2.309, 2.827 and 3.025 toward the QSOs 0100+1300, 1425+6039 and
0347-3819 respectively. The behaviour of nitrogen relative to iron-peak and
alpha-elements has been investigated by considering all the extant NI
determinations for a total of 9 DLA galaxies. We have estimated the fraction of
iron locked into dust grains to convert the observed [N/Fe] ratios into overall
(dust plus gas) relative abundances, [N/Fe]corr. The ratios [N/alpha] have been
mostly determined by using sulphur as a tracer of alpha-elements which is
unaffected by dust. The [N/Fe] and [N/alpha] ratios show high dispersions, of
one order of magnitude or more, which have no equivalent in other
element-to-element ratios in DLAs. The lowest values of the [N/Fe]corr and
[N/alpha] ratios are at variance with the values measured in Galactic halo
stars of similar metallicity suggesting that part of the DLA galaxies do not
follow the chemical evolution of the Milky Way. The DLA nitrogen abundances and
their dispersion show some similarities with those observed in dwarf galaxies.
The behaviour of nitrogen abundance ratios can be ascribed, in general to the
delayed release of nitrogen in the course of evolution. However it is difficult
to conciliate this interpretation with the lowest [N/alpha] values measured,
since an expected enhancement of alpha-elements respect to the iron-peak
elements is not observed simultaneously in these DLA galaxies. In two cases,
relatively high [N/alpha] values are observed which require also a more complex
chemical evolution to be explained.Comment: 29 pages including 5 tables and figure captions,LaTeX, 8 figures, ApJ
accepte
Three-Dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks
We explore the application of artificial neural networks (ANNs) for the
estimation of atmospheric parameters (Teff, logg, and [Fe/H]) for Galactic F-
and G-type stars. The ANNs are fed with medium-resolution (~ 1-2 A) non
flux-calibrated spectroscopic observations. From a sample of 279 stars with
previous high-resolution determinations of metallicity, and a set of (external)
estimates of temperature and surface gravity, our ANNs are able to predict Teff
with an accuracy of ~ 135-150 K over the range 4250 <= Teff <= 6500 K, logg
with an accuracy of ~ 0.25-0.30 dex over the range 1.0 <= logg <= 5.0 dex, and
[Fe/H] with an accuracy ~ 0.15-0.20 dex over the range -4.0 <= [Fe/H] <= +0.3.
Such accuracies are competitive with the results obtained by fine analysis of
high-resolution spectra. It is noteworthy that the ANNs are able to obtain
these results without consideration of photometric information for these stars.
We have also explored the impact of the signal-to-noise ratio (S/N) on the
behavior of ANNs, and conclude that, when analyzed with ANNs trained on spectra
of commensurate S/N, it is possible to extract physical parameter estimates of
similar accuracy with stellar spectra having S/N as low as 13. Taken together,
these results indicate that the ANN approach should be of primary importance
for use in present and future large-scale spectroscopic surveys.Comment: 51 pages, 11 eps figures, uses aastex; to appear in Ap
- …