16 research outputs found

    BCL11A enhancer edited hematopoietic stem cells persist in rhesus monkeys without toxicity

    Get PDF
    Gene editing of the erythroid-specific BCL11A enhancer in hematopoietic stem and progenitor cells (HSPCs) from sickle cell disease (SCD) patients induces fetal hemoglobin (HbF) without detectable toxicity as assessed by mouse xenotransplant. Here, we evaluated autologous engraftment and HbF induction potential of erythroid-specific BCL11A enhancer edited HSPCs in four non-human primates. We utilized a single guide RNA (sgRNA) with identical human and rhesus target sequences to disrupt a GATA1 binding site at the BCL11A +58 erythroid enhancer. Cas9 protein and sgRNA ribonucleoprotein complex (RNP) was electroporated into rhesus HSPCs, followed by autologous infusion after myeloablation. We found that gene edits persisted in peripheral blood (PB) and bone marrow (BM) for up to 101 weeks similarly for BCL11A enhancer or control locus (AAVS1) targeted cells. Biallelic BCL11A enhancer editing resulted in robust gamma-globin induction, with the highest levels observed during stress erythropoiesis. Indels were evenly distributed across PB and BM lineages. Off-target edits were not observed. Non-homologous end-joining repair alleles were enriched in engrafting HSCs. In summary, we find that edited HSCs can persist for at least 101 weeks post-transplant, and biallelic edited HSCs provide substantial HbF levels in PB red blood cells, together supporting further clinical translation of this approach

    CD3-immunotoxin mediated depletion of T cells in lymphoid tissues of rhesus macaques

    No full text
    Selective T-cell depletion prior to cell or organ transplantation is considered a preconditioning regimen to induce tolerance and immunosuppression. An immunotoxin consisting of a recombinant anti-CD3 antibody conjugated with diphtheria toxin was used to eliminate T-cells. It showed significant T-cell depletion activity in the peripheral blood and lymph nodes in animal models used in previous studies. To date, a comprehensive evaluation of T-cell depletion and CD3 proliferation for all lymphoid tissues has not been conducted. Here, two rhesus macaques were administered A-dmDT390-SCFBdb (CD3-IT) intravenously at 25 μg/kg twice daily for four days. Samples were collected one day prior to and four days post administration. Flow cytometry and immunofluorescence staining were used to evaluate treatment efficiency accurately. Our preliminary results suggest that CD3-IT treatment may induce higher depletion of CD3 and CD4 T-cells in the lymph nodes and spleen, but is ineffective in the colon and thymus. The data showed a better elimination tendency of CD4 T-cells in the B-cell zone relative to the germinal center in the lymph nodes. Further, CD3-IT treatment may lead to a reduction in germinal center T follicular helper CD4 cells in the lymph nodes compared to healthy controls. The number of proliferating CD3 T-cell indicated that repopulation in different lymphoid tissues may occur four days post treatment. Our results provide insights into the differential efficacy of CD3-IT treatment and T-cell proliferation post treatment in different lymphoid tissues. Overall, CD3-IT treatment shows potential efficacy in depleting T-cells in the periphery, lymph nodes, and spleen, making it a viable preconditioning regimen for cell or organ transplantation. Our pilot study provides critical descriptive statistics and can contribute to the design of larger future studies

    High-Throughput, Sensitive Quantification of Repopulating Hematopoietic Stem Cell Clones ▿ †

    No full text
    Retroviral vector-mediated gene therapy has been successfully used to correct genetic diseases. However, a number of studies have shown a subsequent risk of cancer development or aberrant clonal growths due to vector insertion near or within proto-oncogenes. Recent advances in the sequencing technology enable high-throughput clonality analysis via vector integration site (VIS) sequencing, which is particularly useful for studying complex polyclonal hematopoietic progenitor/stem cell (HPSC) repopulation. However, clonal repopulation analysis using the current methods is typically semiquantitative. Here, we present a novel system and standards for accurate clonality analysis using 454 pyrosequencing. We developed a bidirectional VIS PCR method to improve VIS detection by concurrently analyzing both the 5′ and the 3′ vector-host junctions and optimized the conditions for the quantitative VIS sequencing. The assay was validated by quantifying the relative frequencies of hundreds of repopulating HPSC clones in a nonhuman primate. The reliability and sensitivity of the assay were assessed using clone-specific real-time PCR. The majority of tested clones showed a strong correlation between the two methods. This assay permits high-throughput and sensitive assessment of clonal populations and hence will be useful for a broad range of gene therapy, stem cell, and cancer research applications

    Total body irradiation must be delivered at high dose for efficient engraftment and tolerance in a rhesus stem cell gene therapy model

    No full text
    Reduced intensity conditioning (RIC) is desirable for hematopoietic stem cell (HSC) gene therapy applications. However, low gene marking was previously observed in gene therapy trials, suggesting that RIC might be insufficient for (i) opening niches for efficient engraftment and/or (ii) inducing immunological tolerance for transgene-encoded proteins. Therefore, we evaluated both engraftment and tolerance for gene-modified cells using our rhesus HSC gene therapy model following RIC. We investigated a dose de-escalation of total body irradiation (TBI) from our standard dose of 10Gy (10, 8, 6, and 4Gy), in which rhesus CD34+ cells were transduced with a VSVG-pseudotyped chimeric HIV-1 vector encoding enhanced green fluorescent protein (GFP) (or enhanced yellow fluorescent protein (YFP)). At ∼6 months after transplantation, higher-dose TBI resulted in higher gene marking with logarithmic regression in peripheral blood cells. We then evaluated immunological tolerance for gene-modified cells, and found that lower-dose TBI allowed vigorous anti-GFP antibody production with logarithmic regression, while no significant anti-VSVG antibody formation was observed among all TBI groups. These data suggest that higher-dose TBI improves both engraftment and immunological tolerance for gene-modified cells. Additional immunosuppression might be required in RIC to induce tolerance for transgene products. Our findings should be valuable for developing conditioning regimens for HSC gene therapy applications

    Development of a Human Immunodeficiency Virus Type 1-Based Lentiviral Vector That Allows Efficient Transduction of both Human and Rhesus Blood Cells▿ †

    No full text
    Human immunodeficiency virus type 1 (HIV-1) vectors transduce rhesus blood cells poorly due to a species-specific block by TRIM5α and APOBEC3G, which target HIV-1 capsid and viral infectivity factor (Vif), respectively. We sought to develop a lentiviral vector capable of transducing both human and rhesus blood cells by combining components of both HIV-1 and simian immunodeficiency virus (SIV), including SIV capsid (sCA) and SIV Vif. A chimeric HIV-1 vector including sCA (χHIV) was superior to the conventional SIV in transducing a human blood cell line and superior to the conventional HIV-1 vector in transducing a rhesus blood cell line. Among human CD34+ hematopoietic stem cells (HSCs), the χHIV and HIV-1 vectors showed similar transduction efficiencies; in rhesus CD34+ HSCs, the χHIV vector yielded superior transduction rates. In in vivo competitive repopulation experiments with two rhesus macaques, the χHIV vector demonstrated superior marking levels over the conventional HIV-1 vector in all blood lineages (first rhesus, 15 to 30% versus 1 to 5%; second rhesus, 7 to 15% versus 0.5 to 2%, respectively) 3 to 7 months postinfusion. In summary, we have developed an HIV-1-based lentiviral vector system that should allow comprehensive preclinical testing of HIV-1-based therapeutic vectors in the rhesus macaque model with eventual clinical application

    Integration-specific In Vitro Evaluation of Lentivirally Transduced Rhesus CD34+ Cells Correlates With In Vivo Vector Copy Number

    No full text
    Hematopoietic stem cell (HSC) gene therapy using integrating vectors has a potential leukemogenic risk due to insertional mutagenesis. To reduce this risk, a limitation of ≤2 average vector copy number (VCN) per cell is generally accepted. We developed an assay for VCN among transduced CD34+ cells that reliably predicts in vivo VCN in 16 rhesus recipients of CD34+ cells transduced with a green fluorescent protein (GFP) (or yellow fluorescent protein (YFP))-encoding lentiviral vector. Using GFP (or YFP)-specific probe/primers by real-time PCR, VCN among transduced CD34+ cells had no correlation with VCN among granulocytes or lymphocytes in vivo assayed 6 months post-transplantation. This was a likely result of residual plasmids present in the vector preparation. We then designed self-inactivating long terminal repeat (SIN-LTR)-specific probe/primers, which detect only integrated provirus. Evaluation with SIN-LTR probe/primers resulted in a positive correlation of VCN among transduced CD34+ cells with granulocytes and lymphocytes in vivo. The transduced CD34+ cells had higher VCN (25.1 ± 5.6) as compared with granulocytes (2.8 ± 1) and lymphocytes (2.4 ± 0.7). In summary, an integrated provirus-specific real-time PCR system demonstrated nine- to tenfold higher VCN in transduced CD34+ cells in vitro, as compared with VCN in vivo. Therefore, the restriction of ≤2 VCN before infusion might unnecessarily limit gene transfer efficacy

    Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study.

    Get PDF
    In mice, clonal tracking of hematopoietic stem cells (HSCs) has revealed variations in repopulation characteristics. However, it is unclear whether similar properties apply in primates. Here, we examined this issue through tracking of thousands of hematopoietic stem and progenitor cells (HSPCs) in rhesus macaques for up to 12 years. Approximately half of the clones analyzed contributed to long-term repopulation (over 3-10 years), arising in sequential groups and likely representing self-renewing HSCs. The remainder contributed primarily for the first year. The long-lived clones could be further subdivided into functional groups contributing primarily to myeloid, lymphoid, or both myeloid and lymphoid lineages. Over time, the 4%-10% of clones with robust dual lineage contribution predominated in repopulation. HSPCs expressing a CCR5 shRNA transgene behaved similarly to controls. Our study therefore documents HSPC behavior in a clinically relevant model over a long time frame and provides a substantial system-level data set that is a reference point for future work

    Pre-existing immunity does not impair the engraftment of CRISPR-Cas9-edited cells in rhesus macaques conditioned with busulfan or radiation

    No full text
    CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells
    corecore