9 research outputs found

    Enzyme-inspired dry-powder polymeric catalyst for green and fast pharmaceutical manufacturing processes

    Get PDF
    Funding Information: The authors thank financial support from Fundação para a Ciência e a Tecnologia , Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES Portugal), through project PTDC/EQU-EQU/32473/2017 , a Principal Investigator contract IF/00915/2014 (T.C.), and a doctoral grant SFRH/BDE/51907/2012 , a partnership from FCT/MCTES and the pharmaceutical company HOVIONE (R.V.). L.B.M. would like to acknowledge for FCT/MCTES funding with reference CEECIND/03810/2017. The NMR spectrometers in LabNMR@Cenimat are part of the National NMR Facility, supported by FCT (ROTEIRO/0031/2013 - PINFRA/22161/2016 ), co-financed by FEDER through COMPETE 2020, POCI, and PORL and FCT through PIDDAC ( POCI-01-0145-FEDER-007688 ; UID/CTM/50025/2020-2023 ). The Associate Laboratory Research Unit for Green Chemistry - Clean Technologies and Processes - LAQV is financed by national funds from FCT/MCTES ( UIDB/QUI/50006/2020 ) and cofunded by the ERDF under the PT2020 Partnership Agreement ( POCI-01-0145-FEDER-007265 ). We also acknowledge Dr. Luz Fernandes, REQUIMTE analytical services, for GC analysis. Publisher Copyright: © 2022Catalysis in pharma manufacturing processes is typically homogeneous, expensive and with hard catalyst recovery/regeneration. Herein an enzyme-inspired dry-powder molecularly imprinted polymeric (MIP) system was designed for fast, selective oxidation of a cholesterol derivative and easy catalyst regeneration. The strategy involved the synthesis of a template-monomer (T:M) complex followed by the crosslinked polymerization in supercritical carbon dioxide (scCO2). A 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-MIP catalyst is obtained after the template cleavage from the matrix, and the oxidation of the N[sbnd]H groups turns available TEMPO moieties within the MIP. The oxidation of benzyl alcohol, 5α-cholestan-3β-ol and cholic acid was fast, in high yield and with selective oxidation capacity.publishersversionpublishe

    Polyurea Dendrimer Folate-Targeted Nanodelivery of l-Buthionine sulfoximine as a Tool to Tackle Ovarian Cancer Chemoresistance

    Get PDF
    The research was funded by iNOVA4Health—UID/Multi/04462/, a program financially supported by the Fundação para a Ciência e a Tecnologia—Ministério da Educação e Ciência (FCT-MCTES), through nationalfunds and co-funded by FEDER under the PT2020 Partnership Agreement. We also acknowledge funding from FCT-MCTES through the project DREAM—PTDC/MEC-ONC/29327/2017 and FAI2017 from IPOLFG internal funding.: Ovarian cancer is a highly lethal disease, mainly due to chemoresistance. Our previous studies on metabolic remodeling in ovarian cancer have supported that the reliance on glutathione (GSH) bioavailability is a main adaptive metabolic mechanism, also accounting for chemoresistance to conventional therapy based on platinum salts. In this study, we tested the effects of the in vitro inhibition of GSH synthesis on the restoration of ovarian cancer cells sensitivity to carboplatin. GSH synthesis was inhibited by exposing cells to l-buthionine sulfoximine (l-BSO), an inhibitor of -glutamylcysteine ligase (GCL). Given the systemic toxicity of l-BSO, we developed a new formulation using polyurea (PURE) dendrimers nanoparticles (l-BSO@PUREG4-FA2), targeting l-BSO delivery in a folate functionalized nanoparticle.publishersversionpublishe

    Polyurea dendrimer for efficient cytosolic siRNA delivery

    Get PDF
    PEst-OE/SAU/UI0009/2013 SFRH/BD/62957/2009The design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are 'smart' biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, they are able to automatically and reversibly transform their conformation in response to pH stimulus. Here, we show that PURE-G4 is a useful gene silencing platform showing no cellular toxicity. As a proof of concept we investigated the PURE-G4-siRNA dendriplex, which was shown to be an attractive platform with high transfection efficacy. The simplicity associated with the complexation of siRNA with polyurea dendrimers makes them a powerful tool for efficient cytosolic siRNA delivery.authorsversionpublishe

    Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology

    No full text
    The design and development of affinity polymeric materials through the use of green technology, such as supercritical carbon dioxide (scCO2), is a rapidly evolving field of research with vast applications across diverse areas, including analytical chemistry, pharmaceuticals, biomedicine, energy, food, and environmental remediation. These affinity polymeric materials are specifically engineered to interact with target molecules, demonstrating high affinity and selectivity. The unique properties of scCO2, which present both liquid– and gas–like properties and an accessible critical point, offer an environmentally–friendly and highly efficient technology for the synthesis and processing of polymers. The design and the synthesis of affinity polymeric materials in scCO2 involve several strategies. Commonly, the incorporation of functional groups or ligands into the polymer matrix allows for selective interactions with target compounds. The choice of monomer type, ligands, and synthesis conditions are key parameters of material performance in terms of both affinity and selectivity. In addition, molecular imprinting allied with co–polymerization and surface modification are commonly used in these strategies, enhancing the materials’ performance and versatility. This review aims to provide an overview of the key strategies and recent advancements in the design of affinity polymeric materials using scCO2

    Gas Permeability and Mechanical Properties of Polyurethane-Based Membranes for Blood Oxygenators

    No full text
    The production of medical devices follows strict guidelines where bio- and hemocompatibility, mechanical strength, and tear resistance are important features. Segmented polyurethanes (PUs) are an important class of polymers that fulfill many of these requirements, thus justifying the investigation of novel derivatives with enhanced properties, such as modulated carbon dioxide and oxygen permeability. In this work, three segmented polyurethane-based membranes, containing blocks of hard segments (HSs) dispersed in a matrix of soft segment (SS) blocks, were prepared by reacting a PU prepolymer (PUR) with tris(hydroxymethyl)aminomethane (TRIS), Congo red (CR) and methyl-β-cyclodextrin (MBCD), rendering PU/TRIS, PU/CR and PU/MBCD membranes. The pure (control) PU membrane exhibited the highest degree of phase segregation between HSs and SSs followed by PU/TRIS and PU/MBCD membranes, and the PU/CR membrane displayed the highest degree of mixing. Pure PU and PU/CR membranes exhibited the highest and lowest values of Young’s modulus, tangent moduli and ultimate tensile strength, respectively, suggesting that the introduction of CR increases molecular mobility, thus reducing stiffness. The CO2 permeability was highest for the PU/CR membrane, 347 Barrer, and lowest for the pure PU membrane, 278 Barrer, suggesting that a higher degree of mixing between HSs and SSs leads to higher CO2 permeation rates. The permeability of O2 was similar for all membranes, but ca. 10-fold lower than the CO2 permeability

    Lipid Droplets in Cancer: From Composition and Role to Imaging and Therapeutics

    No full text
    Cancer is the second most common cause of death worldwide, having its origin in the abnormal growth of cells. Available chemotherapeutics still present major drawbacks, usually associated with high toxicity and poor distribution, with only a small fraction of drugs reaching the tumour sites. Thus, it is urgent to develop novel therapeutic strategies. Cancer cells can reprogram their lipid metabolism to sustain uncontrolled proliferation, and, therefore, accumulate a higher amount of lipid droplets (LDs). LDs are cytoplasmic organelles that store neutral lipids and are hypothesized to sequester anti-cancer drugs, leading to reduced efficacy. Thus, the increased biogenesis of LDs in neoplastic conditions makes them suitable targets for anticancer therapy and for the development of new dyes for cancer cells imaging. In recent years, cancer nanotherapeutics offered some exciting possibilities, including improvement tumour detection and eradication. In this review we summarize LDs biogenesis, structure and composition, and highlight their role in cancer theranostics

    Using Machine Learning and Molecular Docking to Leverage Urease Inhibition Data for Virtual Screening

    No full text
    Urease is a metalloenzyme that catalyzes the hydrolysis of urea, and its modulation has an important role in both the agricultural and medical industry. Even though numerous molecules have been tested against ureases of different species, their clinical translation has been limited due to chemical and metabolic stability as well as side effects. Therefore, screening new compounds against urease would be of interest in part due to rising concerns regarding antibiotic resistance. In this work, we collected and curated a diverse set of 2640 publicly available small-molecule inhibitors of jack bean urease and developed a classifier using a random forest machine learning method with high predictive performance. In addition, the physicochemical features of compounds were paired with molecular docking and protein–ligand fingerprint analysis to gather insight into the current activity landscape. We observed that the docking score could not differentiate active from inactive compounds within each chemical family, but scores were correlated with compound activity when all compounds were considered. Additionally, a decision tree model was built based on 2D and 3D Morgan fingerprints to mine patterns of the known active-class compounds. The final machine learning model showed good prediction performance against the test set (81% and 77% precision for active and inactive compounds, respectively). Finally, this model was employed, as a proof-of-concept, on an in-house library to predict new hits that were then tested against urease and found to be active. This is, to date, the largest, most diverse dataset of compounds used to develop predictive in silico models. Overall, the results highlight the usefulness of using machine learning classifiers and molecular docking to predict novel urease inhibitors

    Biocompatible oligo-oxazoline crosslinkers: Towards advanced chitosans for controlled dug release

    Get PDF
    Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).Chitosan, a natural and abundant biopolymer has been long explored as a biocompatible material for the preparation of drug delivery devices. This strategy has been mostly accomplished using chemically crosslinked chitosan leading to more stable scaffolds. However, crosslinking has been shown to reduce both biocompatibility and swelling. In this work chitosan was crosslinked with novel biocompatible crosslinkers, based on oligo-oxazolines and glycidyl methacrylate copolymers, leading to patches with a very high swelling capacity. Dexamethasone therapeutics is strongly enhanced by a controlled release administration. This study shows that oligo-oxazoline-crosslinked chitosan is a suitable biomaterial for loading and controlled release of dexamethasone.publishersversionpublishe

    The ribonuclease PNPase is a key regulator of biofilm formation in Listeria monocytogenes and affects invasion of host cells

    No full text
    Abstract Biofilms provide an environment that protects microorganisms from external stresses such as nutrient deprivation, antibiotic treatments, and immune defences, thereby creating favorable conditions for bacterial survival and pathogenesis. Here we show that the RNA-binding protein and ribonuclease polynucleotide phosphorylase (PNPase) is a positive regulator of biofilm formation in the human pathogen Listeria monocytogenes, a major responsible for food contamination in food-processing environments. The PNPase mutant strain produces less biofilm biomass and exhibits an altered biofilm morphology that is more susceptible to antibiotic treatment. Through biochemical assays and microscopical analysis, we demonstrate that PNPase is a previously unrecognized regulator of the composition of the biofilm extracellular matrix, greatly affecting the levels of proteins, extracellular DNA, and sugars. Noteworthy, we have adapted the use of the fluorescent complex ruthenium red-phenanthroline for the detection of polysaccharides in Listeria biofilms. Transcriptomic analysis of wild-type and PNPase mutant biofilms reveals that PNPase impacts many regulatory pathways associated with biofilm formation, particularly by affecting the expression of genes involved in the metabolism of carbohydrates (e.g., lmo0096 and lmo0783, encoding PTS components), of amino acids (e.g., lmo1984 and lmo2006, encoding biosynthetic enzymes) and in the Agr quorum sensing-like system (lmo0048-49). Moreover, we show that PNPase affects mRNA levels of the master regulator of virulence PrfA and PrfA-regulated genes, and these results could help to explain the reduced bacterial internalization in human cells of the ΔpnpA mutant. Overall, this work demonstrates that PNPase is an important post-transcriptional regulator for virulence and adaptation to the biofilm lifestyle of Gram-positive bacteria and highlights the expanding role of ribonucleases as critical players in pathogenicity
    corecore