164 research outputs found
Bioimpedance Vector References Need to Be Period‐ Specific for Assessing Body Composition and Cellular Health in Elite Soccer Players: A Brief Report
none9noPurpose: Bioimpedance data through bioimpedance vector analysis (BIVA) is used to evaluate cellular function and body fluid content. This study aimed to (i) identify whether BIVA patters differ according to the competitive period and (ii) provide specific references for assessing bioelectric properties at the start of the season in male elite soccer players. Methods: The study included 131 male soccer players (age: 25.1 ± 4.7 yr, height: 183.4 ± 6.1 cm, weight: 79.3 ± 6.6) registered in the first Italian soccer division (Serie A). Bioimpedance analysis was performed just before the start of the competitive season and BIVA was applied. In order to verify the need for period-specific references, bioelectrical values measured at the start of the season were compared to the reference values for the male elite soccer player population. Results: The results of the two-sample Hotelling T2tests showed that in the bivariate interpretation of the raw bioimpedance parameters (resistance (R) and reactance (Xc)) the bioelectric properties significantly (T2= 15.3, F = 7.6, p ≤ 0.001, Mahalanobis D = 0.45) differ between the two phases of the competition analyzed. In particular, the mean impedance vector is more displaced to the left into the R-Xc graph at the beginning of the season than in the first half of the championship. Conclusions: For an accurate evaluation of body composition and cellular health, the tolerance ellipses displayed by BIVA approach into the R-Xc graph must be period-specific. This study provides new specific tolerance ellipses (R/H: 246 ± 32.1, Xc/H: 34.3 ± 5.1, r: 0.7) for performing BIVA at the beginning of the competitive season in male elite soccer players.openBongiovanni T.; Mascherini G.; Genovesi F.; Pasta G.; Iaia F.M.; Trecroci A.; Ventimiglia M.; Alberti G.; Campa F.Bongiovanni T.; Mascherini G.; Genovesi F.; Pasta G.; Iaia F.M.; Trecroci A.; Ventimiglia M.; Alberti G.; Campa F
Co-design of sectoral climate services based on seasonal prediction information in the Mediterranean
We present in this contribution the varied experiences gathered in the co-design of a sectoral climate services collection, developed in the framework of the MEDSCOPE project, which have in common the application of seasonal predictions for the Mediterranean geographical and climatic region. Although the region is affected by low seasonal predictability limiting the skill of seasonal forecasting systems, which historically has hindered the development of downstream services, the project was originally conceived to exploit windows of opportunity with enhanced skill for developing and evaluating climate services in various sectors with high societal impact in the region: renewable energy, hydrology, and agriculture and forestry. The project also served as the scientific branch of the WMO-led Mediterranean Climate Outlook Forum (MedCOF) that had as objective -among others- partnership strengthening on climate services between providers and users within the Mediterranean region. The diversity of the MEDSCOPE experiences in co-designing shows the wide range of involvement and engagement of users in this process across the Mediterranean region, which benefits from the existing solid and organized MedCOF community of climate services providers and users. A common issue among the services described here -and also among other prototypes developed in the project- was related with the communication of forecasts uncertainty and skill for efficiently informing decision-making in practice. All MEDSCOPE project prototypes make use of an internally developed software package containing process-based methods for synthesising seasonal forecast data, as well as basic and advanced tools for obtaining tailored products. Another challenge assumed by the project refers to the demonstration of the economic, social, and environmental value of predictions provided by these MEDSCOPE prototypes.The work described in this paper has received funding from the MEDSCOPE project co-funded by the European Commission as part of ERA4CS, an ERA-NET initiated by JPI Climate, grant agreement 690462
Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies
In August 2016, a magnitude 6.0 earthquake struck Central Italy, starting a devastating seismic sequence, aggravated by other two events of magnitude 5.9 and 6.5, respectively. After the first mainshock, four Italian institutions installed a dense temporary network of 50 seismic stations in an area of 260 km2. The network was registered in the International Federation of Digital Seismograph Networks with the code 3A and quoted with a Digital Object Identifier ( https://doi.org/10.13127/SD/ku7Xm12Yy9 ). Raw data were converted into the standard binary miniSEED format, and organized in a structured archive. Then, data quality and completeness were checked, and all the relevant information was used for creating the metadata volumes. Finally, the 99 Gb of continuous seismic data and metadata were uploaded into the INGV node of the European Integrated Data Archive repository. Their use was regulated by a Memorandum of Understanding between the institutions. After an embargo period, the data are now available for many different seismological studies.Publishedid 1825T. Sismologia, geofisica e geologia per l'ingegneria sismicaJCR Journa
High performance UV-cured coatings containing fluorinated monomers
PIGMENT AND RESIN TECHNOLOG
Networks from poly alkyleneglycol -a,w-diacrylates: synthesis and characterisation
CURRENT TRENDS IN POLYMER SCIENC
Networks from poly alkyleneglycol -a,w-diacrylates: synthesis and characterisation
CURRENT TRENDS IN POLYMER SCIENC
- …