15 research outputs found

    Assessment of phytoplankton invasion risks in the ballast water of international ships in different growth conditions

    No full text
    <p>The possibility of successful invasion by phytoplankton assemblages in the ballast water of twelve international commercial ships was investigated. Various scenarios of port water dilution rates with a time delay for the exponential growth of the plankton were considered. Most of the phytoplankton in the ballast water samples originated in countries such as Japan and China, and diatoms dominated (>90% abundance) these phytoplankton communities. To assess their survival after discharge in seawater under various conditions, the phytoplankton were reintroduced into ballast water, pier-side water, and nutrient-enriched f/2 medium and incubated at various water temperatures and salinities for 2 weeks. The growth of the invading phytoplankton was influenced by the time delay for regrowth when introduced in the new seawater conditions. The results also suggest that once introduced by ballast water, the growth of a phytoplankton community may depend more on the nutrient levels and the water temperature and less on the salinity. Although we did not consider parameters such as competition with native species and predation, both high nutrient concentrations and water temperatures may significantly shorten the period before exponential growth occurs, which increases the invasion potential.</p

    Toxicity of Antifouling Biocides and Wastes from Ships&rsquo; Surfaces during High-Pressure Water-Blasting Cleaning Activities in the Nauplii and Eggs of the Estuarine Copepod Paracalanus parvus sl

    No full text
    Copepods, the dominant member of zooplankton and major grazers of phytoplankton in the pelagic ecosystem, are at risk from exposure to antifouling biocides. To evaluate the developmental toxicity of antifouling biocides (Diuron, Irgarol 1051, Sea-nine 211) and wastewater (from high-pressure water blasting (WHPB) and its MeOH extract (WHPB-MeOH)) in the copepod Paracalanus parvus sl, we investigated the chemical concentration, egg-hatching rate, and nauplius mortality. WHPB samples were obtained through hull-cleaning activities involving WHPB in a dry dock. Among the biocides, Sea-nine 211 had the strongest effects on hatching rates and nauplius mortality, which was followed by Diuron and Irgarol 1051. In the WHPB and WHPB-MeOH samples, there was no significant difference between the experimental groups in terms of the egg-hatching rate; however, WHPB was found to be more toxic in terms of nauplius mortality, suggesting that metals in WHPB may also adversely affect nauplius survival in P. parvus sl. A comparison of the LC50 results of Sea-nine 211 and WHPB revealed that WHPB had a negative effect on nauplius mortality even at a 100-fold lower concentration. Therefore, if chemical contaminants generated during in-water cleaning activity are discharged continuously into the ports without being properly collected through a post-treatment system, they are expected to negatively impact the population of copepods near the port. Although verification is needed through additional experiments, our results could be used for a baseline study concerning the toxicity of antifouling biocides on marine copepod species

    Potential Applications of a Novel Ballast Water Pretreatment Device: Grinding Device

    No full text
    To investigate the removal efficiency of the grinding device (GD) as a potential replacement for the pretreatment filtration device of ballast water, solid grinding and viability experiment were conducted according to a treatment flow rate of 5 tons (Pilot test, PT), and 200 tons (Full-scale test, FST) per h. The solid grinding effect was observed in the particle size of ≥25 μm. Under the high-turbidity conditions (&gt;300 mg L−1), no change in pressure (0.98 kgf/cm2) or stoppage in the GD were observed. The removal efficiency of the GD for &gt;100 μm organism was determined to be 100% in both PT and FST, whereas the removal efficiency was determined to be 93% and 87% in the PT and FST, respectively, for the &lt;100 μm organism. There was no statistically significant change in the removal efficiency stored within 2 h after passing through the GD, while the removal efficiency was determined to be ≥99% in the sample stored for 120 h. Future study is necessary to determine the additional removal efficiency according to the storage period after passing through the GD, but the GD might be utilized as the pretreatment device for the ballast water management system

    Toxicity of Antifouling Biocides and Wastes from Ships’ Surfaces during High-Pressure Water-Blasting Cleaning Activities in the Nauplii and Eggs of the Estuarine Copepod <i>Paracalanus parvus</i> sl

    No full text
    Copepods, the dominant member of zooplankton and major grazers of phytoplankton in the pelagic ecosystem, are at risk from exposure to antifouling biocides. To evaluate the developmental toxicity of antifouling biocides (Diuron, Irgarol 1051, Sea-nine 211) and wastewater (from high-pressure water blasting (WHPB) and its MeOH extract (WHPB-MeOH)) in the copepod Paracalanus parvus sl, we investigated the chemical concentration, egg-hatching rate, and nauplius mortality. WHPB samples were obtained through hull-cleaning activities involving WHPB in a dry dock. Among the biocides, Sea-nine 211 had the strongest effects on hatching rates and nauplius mortality, which was followed by Diuron and Irgarol 1051. In the WHPB and WHPB-MeOH samples, there was no significant difference between the experimental groups in terms of the egg-hatching rate; however, WHPB was found to be more toxic in terms of nauplius mortality, suggesting that metals in WHPB may also adversely affect nauplius survival in P. parvus sl. A comparison of the LC50 results of Sea-nine 211 and WHPB revealed that WHPB had a negative effect on nauplius mortality even at a 100-fold lower concentration. Therefore, if chemical contaminants generated during in-water cleaning activity are discharged continuously into the ports without being properly collected through a post-treatment system, they are expected to negatively impact the population of copepods near the port. Although verification is needed through additional experiments, our results could be used for a baseline study concerning the toxicity of antifouling biocides on marine copepod species

    Simulated Testing of the Characteristics and Environmental Impacts of Disinfection By-Products Generated by Ballast Water Management Systems in Ports during Phytoplankton Blooms

    No full text
    Ballast water management systems (BWMSs) using active substances (AS) have been subjected to land-based tests with artificially increased dissolved organic matter (DOM) and cultured species according to the International Maritime Organization G9 guidelines before the BWMS Code revision. Therefore, data on the environment risk assessment (ERA) of disinfection by-products (DBPs) for actual port DOM and natural species are limited. This study was conducted using seawater from Jangmok Bay, South Korea, during a phytoplankton bloom. In treated water with a high biological content (Group A), the DBPs concentration increased as the initial AS concentration increased. However, in treated water with a low biological content (Group B), the DBPs concentration did not increase as the initial AS concentrations. The higher the residual AS concentration on day 5, the more the DBPs concentration increased, and the composition ratio of the DBPs was also affected. The ERA to individual DBP was evaluated as low given <1 for the ratio of the predicted environmental concentration to the predicted no-effect concentration in port environments exposed to DBPs in discharged ballast water. This result may suggest that the ERA of IMO G9 performed with cultured species and additives could substitute the outcome obtained with natural plankton assemblages

    Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean

    No full text
    A mesocosm experiment was conducted to evaluate the influence of photosynthetic performance on the energetic balance of coastal phytoplankton, in relation to community production and autotrophic phytoplankton biomass in future coastal oceans. Natural phytoplankton assemblages were incubated in field mesocosms under ambient condition (control: ca. 400 μatm CO2 and ambient temperature), and two sets of potential future ocean conditions (acidification: ca. 900 μatm CO2 and ambient temperature; greenhouse: ca. 900 μatm CO2 and 3 C warmer). The photosynthetic performances were estimated by in vivo fluorometry (effective quantum yield (ΦPSII), steady-state light response curves (LCs)) and in situ incorporation of 14C (photosynthesis-irradiance curves). The ΦPSII and rETRm,LC (relative maximum electron transport rate) clearly reduced under acidification, in particular, when phytoplankton were exposed to high light levels. However, PBmax (maximum photosynthetic rate) was the same in the ambient and acidification conditions. Thus, phytoplankton utilized less light under acidification condition, but could still assimilate a similar amount of carbon compared to the ambient condition. The PBmax and α (photosynthetic efficiency) under greenhouse condition were significantly higher than those under ambient condition without any difference in ΦPSII, rETRm,LC and α,LC (electron transport efficiency) between the treatments. Therefore, phytoplankton utilized the same amount of light under greenhouse condition, but could assimilate more carbon than under ambient condition. As a result, Chl a normalized primary production was higher in greenhouse than in other conditions. Nevertheless, the community production did not change between the experimental treatments. The main reason for the lack of a change in primary production under future climate conditions is the control of autotrophic phytoplankton biomass by grazing. Consequently, acidification and greenhouse environments have a potential to increase growth and primary production of phytoplankton by enhancing inorganic carbon assimilation efficiency when top-down regulation is negligible. © Author(s) 2013.11Ysciescopu

    The Effects of Ocean Acidification and Warming on Growth of a Natural Community of Coastal Phytoplankton

    No full text
    An in situ mesocosm experiment was performed to investigate the combined effects of ocean acidification and warming on the coastal phytoplankton standing stock and species composition of a eutrophic coastal area in the temperate-subtropical region. Experimental treatments of natural seawater included three CO2 and two temperature conditions (present control: similar to 400 mu atm CO2 and ambient temperature, acidification conditions: similar to 900 mu atm CO2 and ambient temperature, and greenhouse conditions: similar to 900 mu atm CO2 and ambient temperature +3 degrees C). We found that increased CO2 concentration benefited the growth of small autotrophic phytoplankton groups: picophytoplankton (PP), autotrophic nanoflagellates (ANF), and small chain-forming diatoms (DT). However, in the greenhouse conditions, ANF and DT abundances were lower compared with those in the acidification conditions. The proliferation of small autotrophic phytoplankton in future oceanic conditions (acidification and greenhouse) also increased the abundance of heterotrophic dinoflagellates (HDF). These responses suggest that a combination of acidification and warming will not only increase the small autotrophic phytoplankton standing stock but, also, lead to a shift in the diatom and dinoflagellate species composition, with potential biogeochemical element cycling feedback and an increased frequency and intensity of harmful algal blooms.11Ysciescopu

    Development of Biological Risk Assessment Protocols for Evaluating the Risks of In-Water Cleaning of Hull-Fouling Organisms

    No full text
    Herein, we evaluate the scientific basis for managing hull fouling of ships entering Korean ports, diagnose biological risks that may occur when in-water cleaning (IWC) systems remove hull fouling, and present a protocol for evaluating these risks (the Korean Infection Modes and Effects Analysis; K-IMEA). Protocol development included the selection of core elements and scenario design for IWC and the evaluation of regrowth experiments. The K-IMEA index was designed by considering the inoculation pathway of attaching organisms in all processes to ships that enter a port for in-water cleaning. A number of risk indices were defined: R1—Introduction/Establishment of alien species before in-water cleaning; R2—Establishment of alien species escaped during in-water cleaning; R3—Introduction/Establishment of alien species after in-water cleaning; and R4—Establishment of alien species in effluent water. K-IMEA regrowth experiments (R2 and R4) using the in-water cleaning effluent showed that the attachment and regrowth of prokaryotes, microalgae, and macroalgae were successfully detected. In particular, prokaryotes were observed in samples filtered through a 5 μm mesh of the in-water cleaning effluent, even at a low fouling rating (Levels 1–2). These experiments suggest a necessity to consider a secondary treatment method in addition to the primary filtration method for the treatment of in-water cleaning effluents

    Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world

    No full text
    Oceanic dimethylsulfide (DMS) released to the atmosphere affects the Earth&apos;s radiation budget through the production and growth of cloud condensation nuclei over the oceans. However, it is not yet known whether this negative climate feedback mechanism will intensify or weaken in oceans characterized by high CO2 levels and warm temperatures. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a perturbation experiment in a coastal environment. Two sets of CO2 and temperature conditions (a pCO2 of ∼900 ppmv at ambient temperature conditions, and a pCO2 of ∼900 ppmv at a temperature ∼3 °C warmer than ambient) significantly stimulated the grazing rate and the growth rate of heterotrophic dinoflagellates (ubiquitous marine microzooplankton). The increased grazing rate resulted in considerable DMS production. Our results indicate that increased grazing-induced DMS production may occur in high CO2 oceans in the future. © 2010 American Chemical Society.11Nsciescopu

    Direct linkage between dimethyl sulfide production and microzooplankton grazing resulting from prey composition change under high pCO2 conditions

    No full text
    Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and ∼2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers. © 2014 American Chemical Society.11Nsciescopu
    corecore