5 research outputs found

    A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection

    Get PDF
    The response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure. Analysis of predictive gene features reveal little overlap among models; however, in aggregate, these genes are enriched for common pathways. Heme metabolism, the most significantly enriched pathway, is associated with a higher risk of developing symptoms following viral exposure. This study demonstrates that pre-exposure molecular predictors can be identified and improves our understanding of the mechanisms of response to respiratory viruses

    KLRD1-expressing natural killer cells predict influenza susceptibility

    No full text
    Abstract Background Influenza infects tens of millions of people every year in the USA. Other than notable risk groups, such as children and the elderly, it is difficult to predict what subpopulations are at higher risk of infection. Viral challenge studies, where healthy human volunteers are inoculated with live influenza virus, provide a unique opportunity to study infection susceptibility. Biomarkers predicting influenza susceptibility would be useful for identifying risk groups and designing vaccines. Methods We applied cell mixture deconvolution to estimate immune cell proportions from whole blood transcriptome data in four independent influenza challenge studies. We compared immune cell proportions in the blood between symptomatic shedders and asymptomatic nonshedders across three discovery cohorts prior to influenza inoculation and tested results in a held-out validation challenge cohort. Results Natural killer (NK) cells were significantly lower in symptomatic shedders at baseline in both discovery and validation cohorts. Hematopoietic stem and progenitor cells (HSPCs) were higher in symptomatic shedders at baseline in discovery cohorts. Although the HSPCs were higher in symptomatic shedders in the validation cohort, the increase was statistically nonsignificant. We observed that a gene associated with NK cells, KLRD1, which encodes CD94, was expressed at lower levels in symptomatic shedders at baseline in discovery and validation cohorts. KLRD1 expression in the blood at baseline negatively correlated with influenza infection symptom severity. KLRD1 expression 8 h post-infection in the nasal epithelium from a rhinovirus challenge study also negatively correlated with symptom severity. Conclusions We identified KLRD1-expressing NK cells as a potential biomarker for influenza susceptibility. Expression of KLRD1 was inversely correlated with symptom severity. Our results support a model where an early response by KLRD1-expressing NK cells may control influenza infection
    corecore