33 research outputs found

    Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death

    Get PDF
    Background: Somatic cell nuclear transfer (scNT)-derived piglets have high rates of mortality, including stillbirth and postnatal death. Here, we examined severe malformed umbilical cords (MUC), as well as other organs, from nine scNT-derived term piglets. Results: Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC. Conclusion: These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development

    Inhibitory Effects of Chrysanthemum boreale

    Get PDF
    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors

    A CMOS Image Sensor-Based Stereo Matching Accelerator With Focal-Plane Sparse Rectification and Analog Census Transform

    No full text
    A low-latency and low-power stereo matching accelerator is monolithically integrated with a CMOS image sensor (CIS) for mobile applications. To reduce the overall latency, focal-plane processing is adopted by using the proposed analog census transform circuit (ACTC), and the image readout is pipelined with the following stereo matching process. In addition, a novel focal-plane rectification pixel array (FRPA) merges the rectification with the image readout without any additional processing latency. For area-efficient pixel design, sparse rectification is proposed, and the image rectification is implemented with only two additional switches in each pixel. A stereo matching digital processor (SMDP) is integrated with the CIS for cost aggregation. We present the full design including the layout with a 65 nm CMOS process, and the FRPA, the ACTC, and the SMDP achieve 11.0 ms latency with complete stereo matching stages, which is suitable for a smooth user interface. As a result, the 2-chip stereo matching system dissipates 573.9 mu J/frame and achieves 17% energy reduction compared to a previous stereo matching So

    An ultra-low-power and mixed-mode event-driven face detection soc for always-on mobile applications

    No full text
    A new face detection SoC integrating CIS array with low-power face detector on a single chip in analog-digital mixed-mode is proposed for ultra-low-power mobile device applications such as always-on user authentication. The proposed event-driven mixed-mode face detection SoC performs Viola-Jones face detection with not only analog face detection circuits but also digital vision processor. The analog face detection circuits enable 85% of workload to be skipped before A/D conversion and digital face detection processing, resulting in 39% power reduction. Implemented in 65nm CMOS technology, 11.09 mm2 chip with 2.5V for CIS and 0.8V for digital vision processor consumes 24??W and 96??W at 1fps with non-face images and face images, respectively

    Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films

    No full text
    By directly coordinating hippuric acid (HA) to the ferrate (Fe) as an electron transfer mediator, we synthesized a Fe-HA complex, which shows a good electrochemical signal and thus enables the electrochemical immunoanalysis for HA. We electrodeposited organic films containing imidazole groups on the electrode surface and then bonded Ni ion (positive charge) to induce immobilization of Fe-HA (negative charge) through the electrostatic interaction. The heterogeneous competitive immunoassay system relies on the interaction between immobilized Fe-HA antigen conjugate and free HA antigen to its antibody (anti-HA). The electric signal becomes weaker due to the hindered electron transfer reaction when a large-sized HA antibody is bound onto the Fe-HA. However, in the presence of HA, the electric signal increases because free HA competitively reacts with the HA antibody prior to actual reaction and thus prevents the HA antibody from interacting with Fe-HA at the electrode surface. This competition reaction enabled an electrochemical quantitative analysis of HA concentration with a detection limit of 0.5 μg mL−1, and thus allowed us to develop a simple and rapid electrochemical immunosensor

    Urinothorax after ultrasonography-guided renal biopsy: a case report

    No full text
    Abstract Background Urinothorax is defined as the presence of urine in the pleural space and is a rather rare cause of transudate pleural effusion. The potential etiologies are urinary tract obstruction and trauma. Diagnosis requires a high index of clinical suspicion and the condition is completely reversible following relief of underlying disease. Case presentation We report a 27-year-old man who developed urinothorax after renal biopsy. Urine leakage was confirmed with 99mTc DTPA (diethylenetriaminepentacetate) and single-photon emission computed tomography scans and retrograde pyelography. The pleural effusion was completely resolved by removing the leakage with a Foley catheter and a double J stent. Conclusions Urinothorax has not been reported in patients doing renal biopsy in the literature. Based on our experience, urinothorax should be suspected, diagnosed, and managed appropriately when pleural effusion occurred after renal biopsy

    A 1.22 TOPS and 1.52mW/MHz Augmented Reality Multi-Core Processor with Neural Network NoC for HMD Applications

    No full text
    Augmented reality (AR) is being investigated in advanced displays for the augmentation of images in a real-world environment. Wearable systems, such as head-mounted display (HMD) systems, have attempted to support real-time AR as a next generation UI/UX [1-2], but have failed, due to their limited computing power. In a prior work, a chip with limited AR functionality was reported that could perform AR with the help of markers placed in the environment (usually 1D or 2D bar codes) [3]. However, for a seamless visual experience, 3D objects should be rendered directly on the natural video image without any markers. Unlike marker-based AR, markerless AR requires natural feature extraction, general object recognition, 3D reconstruction, and camera-pose estimation to be performed in parallel. For instance, markerless AR for a VGA input-test video consumes ~1.3W power at 0.2fps throughput, with TI's OMAP4430, which exceeds power limits for wearable devices. Consequently, there is a need for a high-performance energy-efficient markerless AR processor to realize a real-time AR system, especially for HMD applications

    A task-level pipelined many-SIMD augmented reality processor with congestion-aware network-on-chip scheduler

    No full text
    A 36 Heterogeneous multicore processor is proposed to accelerate recognition-based markerless augmented reality. To enable a real-time operation of the proposed augmented reality, task-level pipelined multicore architecture with DLP/TLP optimized SIMD processing elements is implemented. In addition, the multicore employs a congestion-aware network-on-chip scheduler for 2D-mesh network-on-chip to support massive internal data transaction caused by task-level pipeline. As a result, it achieves 1.22TOPS peak performance and 1.57TOPS/W energy-efficiency, which are 88% and 76% improvement over a state-of-the-art augmented reality processor, for 30fps 720p test input video
    corecore