845 research outputs found
Cell–Cell Fusion: A New Function for Invadosomes
SummaryPodosomes are cytoskeletal-based structures involved in extracellular matrix remodeling and cellular motility. A new study now implicates podosomes in pore formation during myoblast fusion
Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility
Directional cellular movement is required for various organismal processes, including immune defense and cancer metastasis. Proper navigation of migrating cells involves responding to a complex set of extracellular cues, including diffusible chemical signals and physical structural information. In tissues, conflicting gradients and signals may require cells to not only respond to the environment but also modulate it for efficient adhesion formation and directional cell motility. Recently, we found that cells endocytose fibronectin (FN) and resecrete it from a late endosomal/lysosomal (LE/Lys) compartment to provide an autocrine extracellular matrix (ECM) substrate for cell motility. Branched actin assembly regulated by cortactin was required for trafficking of FN-containing vesicles from LE/Lys to the cell surface. These findings suggest a model in which migrating cells use lysosomal secretion as a versatile mechanism to modulate the ECM environment, promote adhesion assembly and enhance directional migration
Glutathione S-transferase pi (GST-pi) inhibition and anti-inflammation activity of the ethyl acetate extract of Streptomyces sp. strain MJM 8637
AbstractTo investigate the anti-cancer properties of soil-borne actinobacteria, MJM 8637, the glutathione S-transferase pi (GST-pi) assay, anti-tumor necrosis factor (TNF)-α assay, the level of antioxidant potential by DPPH radical scavenging activity, NO scavenging activity, and ABTS radical scavenging activity in ethyl acetate extract were determined. The 16S rDNA sequencing analysis revealed that Streptomyces sp. strain MJM 8637, which was isolated from Hambak Mountain, Korea, has 99.5% similarity to Streptomyces atratus strain NBRC 3897. The physiological and the morphological characteristics of the strain MJM 8637 were also identified. The ethyl acetate extract of MJM 8637 inhibited TNF-α production approximately 61.8% at concentration 100μg/ml. The IC50 value of the strain MJM 8637 extract on GST-pi was identified to be 120.2±1.6μg/ml. In DPPH, NO, and ABTS radical scavenging assays, the IC50 values of the strain MJM 8637 extract were found to be 977.2μg/ml, 1143.7μg/ml, and 454.4μg/ml, respectively. The ethyl acetate extract of the strain MJM 8637 showed 97.2±1.3% of cell viability at 100μg/ml in RAW 264.7 cell viability assay. The results obtained from this study suggest that the ethyl acetate extract of Streptomyces sp. strain MJM 8637 could be considered as a potential source of drug for the cancers that have multidrug resistance with its GST-pi inhibition and anti-inflammation activities, and low cytotoxicity
Human cell-camouflaged nanomagnetic scavengers restore immune homeostasis in a rodent model with bacteremia
Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment
Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition
Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the “autocrine extracellular matrix (ECM) deposition” fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell–directed movement
- …