2,032 research outputs found
Evaluation of measurement accuracies of the Higgs boson branching fractions in the International Linear Collider
Precise measurement of Higgs boson couplings is an important task for
International Linear Collider (ILC) experiments and will facilitate the
understanding of the particle mass generation mechanism.
In this study, the measurement accuracies of the Higgs boson branching
fractions to the and quarks and gluons, , were evaluated with the full International Large
Detector model (\texttt{ILD\_00}) for the Higgs mass of 120 GeV at the
center-of-mass (CM) energies of 250 and 350 GeV using neutrino, hadronic and
leptonic channels and assuming an integrated luminosity of ,
and an electron (positron) beam polarization of -80% (+30%).
We obtained the following measurement accuracies of the Higgs cross section
times branching fraction () for decay
of the Higgs into , , and ; as 1.0%, 6.9%, and 8.5% at
a CM energy of 250 GeV and 1.0%, 6.2%, and 7.3% at 350 GeV, respectively.
After the measurement accuracy of the cross section ()
was corrected using the results of studies at 250 GeV and their extrapolation
to 350 GeV, the derived measurement accuracies of the branching fractions
() to , , and gg were 2.7%, 7.3%, and 8.9% at
a CM energy of 250 GeV and 3.6%, 7.2%, and 8.1% at 350 GeV, respectively.Comment: 15 pages, 6 figure
Period Integrals of CY and General Type Complete Intersections
We develop a global Poincar\'e residue formula to study period integrals of
families of complex manifolds. For any compact complex manifold equipped
with a linear system of generically smooth CY hypersurfaces, the formula
expresses period integrals in terms of a canonical global meromorphic top form
on . Two important ingredients of our construction are the notion of a CY
principal bundle, and a classification of such rank one bundles. We also
generalize our construction to CY and general type complete intersections. When
is an algebraic manifold having a sufficiently large automorphism group
and is a linear representation of , we construct a holonomic D-module
that governs the period integrals. The construction is based in part on the
theory of tautological systems we have developed in the paper \cite{LSY1},
joint with R. Song. The approach allows us to explicitly describe a
Picard-Fuchs type system for complete intersection varieties of general types,
as well as CY, in any Fano variety, and in a homogeneous space in particular.
In addition, the approach provides a new perspective of old examples such as CY
complete intersections in a toric variety or partial flag variety.Comment: An erratum is included to correct Theorem 3.12 (Uniqueness of CY
structure
Automated radiofrequency-based US measurement of common carotid intima-media thickness in RA patients treated with synthetic vs synthetic and biologic DMARDs
Objective. To compare the carotid intima-media thickness (IMT) assessed with automated radiofrequency-based US in RA patients treated with synthetic vs synthetic and biologic DMARDs and controls. Methods. Ninety-four RA patients and 94 sex-and age-matched controls were prospectively recruited at seven centres. Cardiovascular (CV) risk factors and co-morbidities, RA characteristics and therapy were recorded. Common carotid artery (CCA)-IMT was assessed in RA patients and controls with automated radiofrequency-based US by the same investigator at each centre. Results. Forty-five (47.9%) RA patients had been treated with synthetic DMARDs and 49 (52.1%) with synthetic and biologic DMARDs. There were no significant differences between the RA patients and controls in demographics, CV co-morbidities and CV disease. There were significantly more smokers among RA patients treated with synthetic and biologic DMARDs (P = 0.036). Disease duration and duration of CS and synthetic DMARD therapy was significantly longer in RA patients treated with synthetic and biologic DMARDs (P<0.0005). The mean CCA-IMT was significantly greater in RA patients treated only with synthetic DMARDs than in controls [591.4 (98.6) vs 562.1 (85.8); P = 0.035] and in RA patients treated with synthetic and biologic DMARDs [591.4 (98.6) vs 558.8 (95.3); P = 0.040). There was no significant difference between the mean CCA-IMT in RA patients treated with synthetic and biologic DMARDs and controls (P = 0.997). Conclusion. Our results suggest that radiofrequency-based measurement of CCA-IMT can discriminate between RA patients treated with synthetic DMARDs vs RA patients treated with synthetic and biologic DMARDs
Recommended from our members
Wire scanners for beam size and emittance measurements at the SLC
The SLC wire scanner beam profile monitors provide accurate beam size and emittance measurements for each bunch in the three bunch SLC beam. The beam size measurement error for typical 50GeV SLC linac beams (100{mu}m {sigma}({sub x,y})) is better than 5{mu}m. Beam profile measurements can be performed throughout much of the SLC with no interruption to normal machine operation and no adverse impact on interaction region detector backgrounds. The linac input and output emittance is determined using sets of four scanners spaced by {approximately}45{degrees} betatron phase advance. Each scanner contains three wires, x, y and u (45{degrees}), from which an estimate of the x-y coupling can be obtained. Advanced high level control software allows the use of wire scanner data in feedback and beam optimization procedures. Non-invasive scans are performed almost continually and the results are logged so that long term trends in emittance can be examined. In this paper we describe the design, construction, performance and uses of SLC wire scanners. 7 refs., 3 figs., 1 tab
How does a cadaver model work for testing ultrasound diagnostic capability for rheumatic-like tendon damage?
To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1); or complete tear (2). All 20 tendons were blindly and independently evaluated twice, over two rounds, by each of the three observers. Overall, technical performance was satisfactory for all items in the two rounds (all values over 2.9 in a Likert scale 1-5). Intraobserver and interobserver agreement for US grading of tendon damage was good (mean Îș values 0.62 and 0.71, respectively), with greater reliability found in the TAT than the TPT. Concordance between US findings and experimental tendon lesions was acceptable (70-100 %), again greater for the TAT than for the TPT. A cadaver model with surgically created tendon damage can be useful in evaluating US metric properties of RA tendon lesions
Prophylactic and Therapeutic Efficacy of Avian Antibodies against Influenza Virus H5N1 and H1N1 in Mice
Background: Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs) have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY) found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1.
Methods and Findings: We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection.
Conclusions: The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus-specific IgY as affordable, safe, and effective alternative for the control of influenza outbreaks, including the current H1N1 pandemic
Information system for monitoring and assessing stress among medical students
Author ProofThe severe or prolonged exposure to stress-inducing factors in occupational and academic settings is a growing concern. The literature describes several potentially stressful moments experienced by medical students throughout the course, affecting cognitive functioning and learning. In this paper, we introduce the EUSTRESS Solution, that aims to create an Information System to monitor and assess, continuously and in real-time, the stress levels of the individuals in order to predict chronic stress. The Information System will use a measuring instrument based on wearable devices and machine learning techniques to collect and process stress-related data from the individual without his/her explicit interaction. A big database has been built through physiological, psychological, and behavioral assessments of medical students. In this paper, we focus on heart rate and heart rate variability indices, by comparing baseline and stress condition. In order to develop a predictive model of stress, we performed different statistical tests. Preliminary results showed the neural network had the better model fit. As future work, we will integrate salivary samples and self-report questionnaires in order to develop a more complex and intelligent model.QVida+ project (Estimação ContĂnua de Qualidade de Vida para AuxĂlio Eficaz Ă DecisĂŁo ClĂnica), funded by European Structural funds (FEDER-003446), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement
- âŠ