3,597 research outputs found
Quantum shot noise in mesoscopic superconductor-semiconductor heterostructures
Shot noise in a mesoscopic electrical conductor have become one of the most attentiondrawing
subject over the last decade. This is because the shot-noise measurements
provide a powerful tool to study charge transport in mesoscopic systems [1]. While
conventional resistance measurements yield information on the average probability
for the transmission of electrons from source to drain, shot-noise provides additional
information on the electron transfer process, which can not be obtained from resistance
measurements. For example, one can determine the charge ‘q’ of the current
carrying quasi-particles in different systems from the Poisson shot noise SI = 2q�I� [2] where �I� is the mean current of the system. For instance, the quasi-particle
charge is a fraction of the electron charge ‘e’ in the fractional quantum Hall regime
[3, 4, 5]. The multiple charge quanta were observed in an atomic point contact
between two superconducting electrodes [6].
Shot-noise also provides information on the statistics of the electron transfer.
Shot noise in general is suppressed from its classical value SI = 2e�I�, due to the
correlations. In mesoscopic conductors, due to the Pauli principle in fermion statistics,
electrons are highly correlated. As a results, the noise is fully suppressed in the
limit of a perfect open channel T = 1. For the opposite limit of low transmission
T � 1, transmission of electron follows a Poisson process and recovers the Schottky
result SI = 2e�I� [2]. For many channel systems, shot-noise is suppressed to
1/2 × 2e�I� for a symmetric double barrier junction [7, 8], to 1/3 in a disordered
wire [9, 10, 11, 12, 13, 14] and to 1/4 in an open chaotic cavity [15, 16, 17].
When a superconductor is involved, the shot-noise can be enhanced by virtue
of the Andreev reflection process taking place at the interface between a normal
metal and a superconductor. In some limiting cases, e.g. in the tunneling and
disordered limit, the shot-noise can be doubled with respect to its normal state
value [18, 19, 20, 21]. One of the main results of this thesis is an extensive comparison
of our experimental data on conductance and shot noise measurements in a S-N
junction with various theoretical models.
In addition to measure shot-noise in a two-terminal geometry, one can also perform
the fluctuation measurements on multi-terminal conductors. Whereas shotnoise corresponds to the autocorrelation of fluctuations from the same leads, crosscorrelation
measurements of fluctuations between different leads provide a wealth of
new experiments. For example, the exchange-correlations can be measured directly
from these geometry [22]. Experimental attempt in mesoscopic electronic device was
the correlation measurements [14, 23] on electron beam-splitter geometry [24] which
is the analogue to the Hanbury-Brown Twiss (HBT) experiment in optics. In their
experiment, Hanbury-Brown and Twiss demonstrated the intensity-intensity correlations
of the light of a star in order to determine its diameter [25]. They measured
a positive correlations between two different output photon beams as predicted to
the particles obeying Bose-Einstein statistics. This behavior is often called ‘bunching’.
On the other hand, a stream of the particles obeying Fermi-Dirac statistics
is expected to show a anti-bunching behavior, resulting in a negative correlation of
the intensity fluctuations. Latter one was confirmed by a Fermionic version of HBT
experiments in single-mode, high-mobility semiconductor 2DEG systems [14, 23].
Whereas in a single electron picture, correlations between Fermions are always
negative1 (anti-bunching), the correlation signal is expected to become positive if
two electrons are injected simultaneously to two arms and leave the device through
different leads for the coincident detection in both outputs2. One simple example is
the splitting of the cooper pair in a Y-junction geometry in front of the superconductor.
Fig.1.1 shows the possible experimental scheme of the correlation measurement
as described here and the sample realized in an high-mobility semiconductor heterostructures.
Since all three experiments were done3, only one left unfolded, ‘The
positive correlations from the Fermionic system’. The main motivation of this thesis
work was to find a positive correlations in the device shown in Fig.1.1. In a
well defined single channel collision experiment on an electron beam splitter, it has
theoretically been shown that the measured correlations are sensitive to the spin
entanglement [29, 30]. This is another even more exciting issue and we would like
to mention that the experimental quest for positive correlations is important for the
new field of quantum computation and communication in the solid state, [31, 32]
in which entangled electrons play a crucial role. A natural source of entanglement
is found in superconductors in which electrons are paired in a spin-singlet
state. A source of entangled electrons may therefore be based on a superconducting
injector.[33, 34, 27, 35, 36, 37, 38, 38, 39, 40, 41] Even more so, an electronic beamsplitter
is capable of distinguishing entangled electrons from single electrons.[29, 42]
However, the positive correlations have not been observed in solid-state mesoscopic
devices until today. This thesis is organized as follows. Chapter 2 is devoted to the theoretical
background of the electrical transport and the current fluctuations. We introduce
the basic concept of electrical transport and the shot noise in normal state and
superconductor-normal metal (S-N) junction. We also briefly review the theoretical
proposals and arguments about the current-current cross-correlations in threeterminal
systems. In Chapter 3, we describe the sample fabrication techniques which
have been done in our laboratory such as e-beam lithography, metallization and etching.
We present also the characterization of our particular system, niobium (Nb) /
InAs-based 2DEG junction. Chapter 4 describes the reliable low-temperature measurement
technique for detecting the noise. We characterize our measurement setup
using a simple RC-circuit model. In Chapter 5, our main results about the shot
noise of S-N junction are presented in detail
Petri net approaches for modeling, controlling, and validating flexible manufacturing systems
In this dissertation, we introduce the fundamental ideas and constructs of Petri net models such as ordinary, timed, colored, stochastic, control, and neural, and present some studies that emphasize Petri nets theories and applications as extended research fields that provide suitable platforms in modeling, controlling, validating, and evaluating concurrent systems, information systems, and a versatile dynamic system and manufacturing systems;We then suggest some of extensions that help make Petri nets useful for modeling and analyzing discrete event systems and manufacturing systems models based on the context of a versatile manufacturing system, and applies extended Petri nets models to several manufacturing systems such as an assembly cell, an Automated Palletized Conveyor System, and a tooling machine to show increased modeling power and efficient analysis methods;Finally, Validation methods are presented for these models and results of a performance analysis from a deterministic and stochastic model are used to reorganize and re-evaluate a manufacturing system in order to increase its flexibility
The Mx/G/1 queue with queue length dependent service times
We deal with the MX/G/1 queue where service times depend on the queue length at the service initiation. By using Markov renewal theory, we derive the queue length distribution at departure epochs. We also obtain the transient queue length distribution at time t and its limiting distribution and the virtual waiting time distribution. The numerical results for transient mean queue length and queue length distributions are given.Bong Dae Choi, Yeong Cheol Kim, Yang Woo Shin, and Charles E. M. Pearc
In-situ wear behaviors of various rubbers in low-pressure hydrogen environment
Please click Additional Files below to see the full abstrac
Estimation of the Characteristic Wavelength Parameter in 1D Leray-Burgers Equation with PINN
In this paper, we employ the Physics-Informed Neural Network (PINN) to
estimate the practical range of the characteristic wavelength
parameter(referred to as the smoothing parameter) in the Leray-Burgers
equation. The Leray-Burgers equation, a regularization of the inviscid Burgers
equation, incorporates a Helmholtz filter with a characteristic wavelength
to replace the usual convective velocity, inducing a regularized
convective velocity. The filter bends the equation's characteristics slightly
and makes them not intersect each other, leading to a global solution in time.
By conducting computational experiments with various initial conditions, we
determine the practical range of that closely approximates the
solutions of the inviscid Burgers equation. Our findings indicate that the
value of depends on the initial data, with the practical range of
being between 0.01 and 0.05 for continuous initial profiles and
between 0.01 and 0.03 for discontinuous initial profiles. The Leray-Burgers
equation captures shock and rarefaction waves within the temporal domain for
which training data exists. However, as the temporal domain extends beyond the
training interval, data-driven forward computation demonstrates that the
predictions generated by the PINN start to deviate from the exact solutions.
This study also highlights the effectiveness and efficiency of the
Leray-Burgers equation in real practical problems, specifically Traffic State
Estimation
Circuit Structure and Control Method to Reduce Size and Harmonic Distortion of Interleaved Dual Buck Inverter
A new circuit structure and control method for a high power interleaved dual-buck inverter are proposed. The proposed inverter consists of six switches, four diodes and two inductors, uses a dual-buck structure to eliminate zero-cross distortion, and operates in an interleaved mode to reduce the current stress of switch. To reduce the total harmonic distortion at low output power, the inverter is controlled using discontinuous-current-mode control combined with continuous-current-mode control. The experimental inverter had a power-conversion efficiency of 98.5% at output power = 1300 W and 98.3% at output power = 2 kW, when the inverter was operated at an input voltage of 400 V-DC, output voltage of 220 V-AC/60 Hz, and switching frequency of 20 kHz. The total harmonic distortion was < 0.66%, which demonstrates that the inverter is suitable for high-power dc-ac power conversion.11Ysciescopu
- …