331 research outputs found

    Spatial Structure of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas

    Get PDF
    We investigate analytically and numerically the spatial structure of the non-equilibrium stationary states (NESS) of a point particle moving in a two dimensional periodic Lorentz gas (Sinai Billiard). The particle is subject to a constant external electric field E as well as a Gaussian thermostat which keeps the speed |v| constant. We show that despite the singular nature of the SRB measure its projections on the space coordinates are absolutely continuous. We further show that these projections satisfy linear response laws for small E. Some of them are computed numerically. We compare these results with those obtained from simple models in which the collisions with the obstacles are replaced by random collisions.Similarities and differences are noted.Comment: 24 pages with 9 figure

    Thermal rectifier from deformed carbon nanohorns

    Full text link
    We study thermal rectification in single-walled carbon nanohorns (SWNHs) by using non-equilibrium molecular dynamics (MD) method. It is found that the horns with the bigger top angles show larger asymmetric heat transport due to the larger structural gradient distribution. This kind of gradient behavior can be further adjusted by applying external strain on the SWNHs. After being carefully elongated along the axial direction, the thermal rectification in the elongated SWNHs can become more obvious than that in undeformed ones. The maximum rectification efficiency of SWNHs is much bigger than that of carbon nanotube intramolecular junctions.Comment: 3 figure

    Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas II: The many point particles system

    Full text link
    We study the stationary nonequilibrium states of N point particles moving under the influence of an electric field E among fixed obstacles (discs) in a two dimensional torus. The total kinetic energy of the system is kept constant through a Gaussian thermostat which produces a velocity dependent mean field interaction between the particles. The current and the particle distribution functions are obtained numerically and compared for small E with analytic solutions of a Boltzmann type equation obtained by treating the collisions with the obstacles as random independent scatterings. The agreement is surprisingly good for both small and large N. The latter system in turn agrees with a self consistent one particle evolution expected to hold in the limit of N going to infinity.Comment: 14 pages, 9 figure

    Heat transport in stochastic energy exchange models of locally confined hard spheres

    Full text link
    We study heat transport in a class of stochastic energy exchange systems that characterize the interactions of networks of locally trapped hard spheres under the assumption that neighbouring particles undergo rare binary collisions. Our results provide an extension to three-dimensional dynamics of previous ones applying to the dynamics of confined two-dimensional hard disks [Gaspard P & Gilbert T On the derivation of Fourier's law in stochastic energy exchange systems J Stat Mech (2008) P11021]. It is remarkable that the heat conductivity is here again given by the frequency of energy exchanges. Moreover the expression of the stochastic kernel which specifies the energy exchange dynamics is simpler in this case and therefore allows for faster and more extensive numerical computations.Comment: 21 pages, 5 figure

    Reconstructing Fourier's law from disorder in quantum wires

    Full text link
    The theory of open quantum systems is used to study the local temperature and heat currents in metallic nanowires connected to leads at different temperatures. We show that for ballistic wires the local temperature is almost uniform along the wire and Fourier's law is invalid. By gradually increasing disorder, a uniform temperature gradient ensues inside the wire and the thermal current linearly relates to this local temperature gradient, in agreement with Fourier's law. Finally, we demonstrate that while disorder is responsible for the onset of Fourier's law, the non-equilibrium energy distribution function is determined solely by the heat baths

    Thermodynamic entropy production fluctuation in a two dimensional shear flow model

    Full text link
    We investigate fluctuations in the momentum flux across a surface perpendicular to the velocity gradient in a stationary shear flow maintained by either thermostated deterministic or by stochastic boundary conditions. In the deterministic system the Gallavotti-Cohen (GC)relation for the probability of large deviations, which holds for the phase space volume contraction giving the Gibbs ensemble entropy production, never seems to hold for the flux which gives the hydrodynamic entropy production. In the stochastic case the GC relation is found to hold for the total flux, as predicted by extensions of the GC theorem but not for the flux across part of the surface. The latter appear to satisfy a modified GC relation. Similar results are obtained for the heat flux in a steady state produced by stochastic boundaries at different temperatures.Comment: 9 postscript figure

    Third Order Renormalization Group applied to the attractive one-dimensional Fermi Gas

    Full text link
    We consider a Callan-Symanzik and a Wilson Renormalization Group approach to the infrared problem for interacting fermions in one dimension with backscattering. We compute the third order (two-loop) approximation of the beta function using both methods and compare it with the well known multiplicative Gell-Mann Low approach. We point out a previously unnoticed qualitative dependence of the third order fixed point on an arbitrary dimensionless parameter, which strongly suggest the spurious nature of the fixed point.Comment: 16 pages, Revised version, added comment

    Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains

    Full text link
    The harmonic Fibonacci chain, which is one of a quasiperiodic chain constructed with a recursion relation, has a singular continuous frequency-spectrum and critical eigenstates. The validity of the Fourier law is examined for the harmonic Fibonacci chain with stochastic heat baths at both ends by investigating the system size N dependence of the heat current J and the local temperature distribution. It is shown that J asymptotically behaves as (ln N)^{-1} and the local temperature strongly oscillates along the chain. These results indicate that the Fourier law does not hold on the harmonic Fibonacci chain. Furthermore the local temperature exhibits two different distribution according to the generation of the Fibonacci chain, i.e., the local temperature distribution does not have a definite form in the thermodynamic limit. The relations between N-dependence of J and the frequency-spectrum, and between the local temperature and critical eigenstates are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma
    corecore