1,520 research outputs found

    Algebraic-geometrical formulation of two-dimensional quantum gravity

    Get PDF
    We find a volume form on moduli space of double punctured Riemann surfaces whose integral satisfies the Painlev\'e I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite dimensional moduli space in the spirit of Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.Comment: 10 pages, Latex fil

    N=2 SYM RG Scale as Modulus for WDVV Equations

    Get PDF
    We derive a new set of WDVV equations for N=2 SYM in which the renormalization scale Λ\Lambda is identified with the distinguished modulus which naturally arises in topological field theories.Comment: 6 pages, LaTe

    RG Flow Irreversibility, C-Theorem and Topological Nature of 4D N=2 SYM

    Get PDF
    We determine the exact beta function and a RG flow Lyapunov function for N=2 SYM with gauge group SU(n). It turns out that the classical discriminants of the Seiberg-Witten curves determine the RG potential. The radial irreversibility of the RG flow in the SU(2) case and the non-perturbative identity relating the uu-modulus and the superconformal anomaly, indicate the existence of a four dimensional analogue of the c-theorem for N=2 SYM which we formulate for the full SU(n) theory. Our investigation provides further evidence of the essentially topological nature of the theory.Comment: 9 pages, LaTeX file. Discussion on WDVV and integrability. References added. Version published in PR

    The stringy instanton partition function

    Get PDF
    We perform an exact computation of the gauged linear sigma model associated to a D1-D5 brane system on a resolved A 1 singularity. This is accomplished via supersymmetric localization on the blown-up two-sphere. We show that in the blow-down limit the partition function reduces to the Nekrasov partition function evaluating the equivariant volume of the instanton moduli space. For finite radius we obtain a tower of world-sheet instanton corrections, that we identify with the equivariant Gromov-Witten invariants of the ADHM moduli space. We show that these corrections can be encoded in a deformation of the Seiberg-Witten prepotential. From the mathematical viewpoint, the D1-D5 system under study displays a twofold nature: the D1-branes viewpoint captures the equivariant quantum cohomology of the ADHM instanton moduli space in the Givental formalism, and the D5-branes viewpoint is related to higher rank equivariant Donaldson-Thomas invariants

    Nonperturbative Relations in N=2 SUSY Yang-Mills and WDVV equation

    Get PDF
    We find the nonperturbative relation between ⟨trϕ2⟩\langle {\rm tr} \phi^2 \rangle, ⟨trϕ3⟩\langle {\rm tr} \phi^3\rangle the prepotential F{\cal F} and the vevs ⟨ϕi⟩\langle \phi_i\rangle in N=2N=2 supersymmetric Yang-Mills theories with gauge group SU(3)SU(3). Nonlinear differential equations for F{\cal F} including the Witten -- Dijkgraaf -- Verlinde -- Verlinde equation are obtained. This indicates that N=2N=2 SYM theories are essentially topological field theories and that should be seen as low-energy limit of some topological string theory. Furthermore, we construct relevant modular invariant quantities, derive canonical relations between the periods and investigate the structure of the beta function by giving its explicit form in the moduli coordinates. In doing this we discuss the uniformization problem for the quantum moduli space. The method we propose can be generalized to N=2N=2 supersymmetric Yang-Mills theories with higher rank gauge groups.Comment: 12 pages, LaTex. Expanded version. New results, corrections, references and acknowledgements adde

    Taming open/closed string duality with a Losev trick

    Get PDF
    A target space string field theory formulation for open and closed B-model is provided by giving a Batalin-Vilkovisky quantization of the holomorphic Chern-Simons theory with off-shell gravity background. The target space expression for the coefficients of the holomorphic anomaly equation for open strings are obtained. Furthermore, open/closed string duality is proved from a judicious integration over the open string fields. In particular, by restriction to the case of independence on continuous open moduli, the shift formulas of [7] are reproduced and shown therefore to encode the data of a closed string dual.Comment: 22 pages, no figures; v.2 Refs. and a comment added

    G2 Hitchin functionals at one loop

    Full text link
    We consider the quantization of the effective target space description of topological M-theory in terms of the Hitchin functional whose critical points describe seven-manifolds with G2 structure. The one-loop partition function for this theory is calculated and an extended version of it, that is related to generalized G2 geometry, is compared with the topological G2 string. We relate the reduction of the effective action for the extended G2 theory to the Hitchin functional description of the topological string in six dimensions. The dependence of the partition functions on the choice of background G2 metric is also determined.Comment: 58 pages, LaTeX; v2: Acknowledgments adde

    Conifold geometries, topological strings and multi-matrix models

    Full text link
    We study open B-model representing D-branes on 2-cycles of local Calabi--Yau geometries. To this end we work out a reduction technique linking D-branes partition functions and multi-matrix models in the case of conifold geometries so that the matrix potential is related to the complex moduli of the conifold. We study the geometric engineering of the multi-matrix models and focus on two-matrix models with bilinear couplings. We show how to solve this models in an exact way, without resorting to the customary saddle point/large N approximation. The method consists of solving the quantum equations of motion and using the flow equations of the underlying integrable hierarchy to derive explicit expressions for correlators. Finally we show how to incorporate in this formalism the description of several group of D-branes wrapped around different cycles.Comment: 35 pages, 5.3 and 6 revise

    Irregular singularities in Liouville theory

    Get PDF
    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on the four-sphere.Comment: 84 pages, 6 figure

    Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    Full text link
    Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle and, depending on the pressure drop between inlet and outlet, vapor formation underneath the corner of the sack-wall is observed. The circumstances of cavitation formation are investigated and it is found that the local bulk pressure and mean stress are insufficient to explain the phenomenon. Results obtained in this study strongly suggest that the viscous stress, interfacial contributions to the local pressure, and the Laplace pressure are relevant to the opening of a vapor cavity. This can be described by a generalization of Joseph's criterion that includes these contributions. A macroscopic investigation measuring mass flow rate behavior and discharge coefficient was also performed. As theoretically predicted, mass flow rate increases linearly with the square root of the pressure drop. However, when cavitation occurs, the mass flow growth rate is reduced and eventually it collapses into a choked flow state. In the cavitating regime, as theoretically predicted and experimentally verified, the discharge coefficient grows with the Nurick cavitation number
    • …
    corecore