120 research outputs found

    Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    Get PDF
    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 ± 4week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 ± 0.58 vs. 3.65 ± 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 ± 7.27 to 19.83 ± 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movemen

    Eine neue In-vivo-Technik zur dreidimensionalen Analyse der Translation der Femurkondylen und der Menisken unter dem Einfluß antagonistischer Muskelkräfte

    Get PDF
    The aim of our study was to develop a 3-D MR-based technique for the analysis of meniscal and femoral translations during flexion of the knee, and under the influence of antagonistic muscle forces in healthy subjects. In an open MR system, 5 knees were examined at 30 degrees and 90 degrees flexion using a T1-weighted 3-D gradient echo sequence. A force of 30 Newtons, first in the extending and then in the flexing direction, was applied to the distal lower leg. After three-dimensional reconstruction, the minimal distances between the centre of the tibial plateau and the posterior edge of the menisci and femoral condyles were determined. At 30 degrees flexion, the minimum distance for the meniscus was larger medially than laterally (23.2 +/- 1.8 mm vs. 16.2 +/- 3.3 mm), and this also applied to the condyles (25.1 +/- 1.5 vs. 19.0 +/- 3.0 mm). During flexion to 90 degrees, a posterior translation of 0.5 +/- 0.2 mm was observed for the lateral, and of 3.4 +/- 1.2 mm for the medial, meniscus. The condyles demonstrated a different posterior translation (lateral 2.2 +/- 0.56 mm; medial 1.8 +/- 1.9 mm). No obvious differences were found between extension and flexion muscle activity for the different positions of the knee. In the present study, a new 3-D technique is presented for the analysis of the femoral and meniscal translation at various positions of the knee, and under muscle activity. The results suggest different translation for the menisci and condyles

    A Multiclass Radiomics Method-Based WHO Severity Scale for Improving COVID-19 Patient Assessment and Disease Characterization From CT Scans.

    Get PDF
    OBJECTIVES The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment

    Ion exchanges in apatites. Effects on composition and properties

    Get PDF
    The modification of the composition of apatites materials can be made by several processes corresponding to ion exchange reactions which can conveniently be adapted to current coatings and ceramics and are an alternative to the set up of new synthesis methods. In addition to high temperature thermal treatments, which allow to virtually replace partly or totally monovalent OH- anion of stoichiometric hydroxyapatite by any halogen ion or carbonate, aqueous processes corresponding to dissolution-reprecipitation reactions have also been proposed and used. The most interesting possibilities are however provided by aqueous ion exchange reactions involving nanocrystalline apatites. These apatites are characterised by the existence on the crystal surface of a hydrated layer of loosely bound mineral ions which can be easily exchanged in solution. This layer offers a possibility to trap mineral ions and possibly active molecules which can modify the apatite properties. Such processes are involved in mineralised tissues and could be used in biomaterials for the release of active mineral species
    • …
    corecore