314 research outputs found

    Effects of collective expansion on light cluster spectra in relativistic heavy ion collisions

    Full text link
    We discuss the interplay between collective flow and density profiles, describing light cluster production in heavy ion collisions at very high energies. Calculations are performed within the coalescence model. We show how collective flow can explain some qualitative features of the measured deuteron spectra, provided a proper parametrization of the spatial dependence of the single particle phase space distribution is chosen.Comment: 11 pages Latex, 2 figures, to be published in Phys. Lett.

    Equilibration and freeze-out in an exploding system

    Full text link
    We use a simple gas model to study non-equilibrium aspects of the multiparticle dynamics relevant to heavy ion collisions. By performing numerical simulations for various initial conditions we identify several characteristic features of the fast dynamics occurring in implosion-explosion like processes.Comment: 4 pages, submitted to PR

    Isotopic and Microcanonical Temperatures in Nuclear Multifragmentation

    Get PDF
    A systematic comparison of different isotopic temperatures with the thermodynamical temperature of a multifragment system is made on the basis of the Statistical Multifragmentation Model. It is demonstrated that isotopic temperatures are strongly affected by the secondary decays of hot primary fragments and the population of particle-stable excited states in final fragments. The He-Li temperatures, measured recently by the ALADIN group, are reproduced fairly well both as a function of excitation energy and bound charge. Our analysis confirms the anomaly in the nuclear caloric curve.Comment: 10 pages in LaTeX, 3 ps figures, accepted for publication in Phys. Rev.

    Simultaneous Heavy Ion Dissociation at Ultrarelativistic Energies

    Get PDF
    We study the simultaneous dissociation of heavy ultrarelativistic nuclei followed by the forward-backward neutron emission in peripheral collisions at colliders. The main contribution to this particular heavy-ion dissociation process, which can be used as a beam luminosity monitor, is expected to be due to the electromagnetic interaction. The Weizsacker-Williams method is extended to the case of simultaneous excitation of collision partners which is simulated by the RELDIS code. A contribution to the dissociation cross section due to grazing nuclear interactions is estimated within the abrasion model and found to be relatively small.Comment: Talk given at Bologna 2000 Conference - Structure of the Nucleus at the Dawn of the Century, May 29 - June 3, 2000, 4 pages, 2 figure

    Nuclear multifragmentation induced by electromagnetic fields of ultrarelativistic heavy ions

    Get PDF
    We study the disintegration of nuclei by strong electromagnetic fields induced by ultrarelativistic heavy ions. The proposed multi-step model includes 1) the absorption of a virtual photon by a nucleus, 2) intranuclear cascades of produced hadrons and 3) statistical decay of the excited residual nucleus. The combined model describes well existing data on projectile fragmentation at energy 200 GeV per nucleon. Electromagnetic multifragmentation of nuclei is predicted to be an important reaction mechanism at RHIC and LHC energies.Comment: 18 LaTeX pages including 4 figures, uses epsf.sty. Submitted to Phys.Rev.

    Is binary sequential decay compatible with the fragmentation of nuclei at high energy?

    Get PDF
    We use a binary sequential decay model in order to describe the fragmentation of a nucleus induced by the high energy collisions of protons with Au nuclei. Overall agreement between measured and calculated physical observables is obtained. We evaluate and analyse the decay times obtained with two different parametrisations of the decay rates and discuss the applicability of the model to high energy fragmentation.Comment: 6 pages, 4 eps figures. Small changes at the end of the text. More arguments are given in the discussion of the time scale of the proces

    Coulomb Effects on Particle Spectra in Relativistic Nuclear Collisions

    Get PDF
    Coulomb effects on π±\pi^\pm and K±K^\pm spectra in relativistic nuclear collisions are investigated. At collision energies around 1 GeV the ratio of at ultrarelativistic energies. We describe the ratios at SIS, AGS and SPS energies with simple analytic models as well as more elaborate numerical models incorporating the expansion dynamics. The Coulomb effect depends on the properties of the source after the violent collision phase and provides information on source sizes, freeze-out times, and expansion velocities. Comparison with results from HBT analyses are made. Predictions for π±\pi^\pm and K±K^\pm at RHIC and LHC energies are given

    Calculation of the number of partitions with constraints on the fragment size

    Get PDF
    This article introduces recursive relations allowing the calculation of the number of partitions with constraints on the minimum and/or on the maximum fragment size
    corecore