7 research outputs found

    Not all cells are equal : effects of temperature and sex on the size of different cell types in the Madagascar ground gecko Paroedura picta

    Get PDF
    Cell size plays a role in evolutionary and phenotypically plastic changes in body size. To examine this role, we measured the sizes of seven cell types of geckos (Paroedura picta) reared at three constant temperatures (24, 27, and 30°C). Our results show that the cell size varies according to the body size, sex and developmental temperature, but the pattern of this variance depends on the cell type. We identified three groups of cell types, and the cell sizes changed in a coordinated manner within each group. Larger geckos had larger erythrocytes, striated muscle cells and hepatocytes (our first cell group), but their renal proximal tubule cells and duodenal enterocytes (our second cell group), as well as tracheal chondrocytes and epithelial skin cells (our third cell group), were largely unrelated to the body size. For six cell types, we also measured the nuclei and found that larger cells had larger nuclei. The relative sizes of the nuclei were not invariant but varied in a complex manner with temperature and sex. In conclusion, we provide evidence suggesting that changes in cell size might be commonly involved in the origin of thermal and sexual differences in adult size. A recent theory predicts that smaller cells speed up metabolism but demand more energy for their maintenance; consequently, the cell size matches the metabolic demand and supply, which in ectotherms, largely depends on the thermal conditions. The complex thermal dependency of cell size in geckos suggests that further advancements in understanding the adaptive value of cell size requires the consideration of tissue-specific demand/supply conditions

    Metabolism and toxicity of cadmium in humans and animals

    No full text
    Cadmium (Cd(II)) is one of the most important toxic chemicals due to its increasing level in the environment as a result of industrial and agricultural practices. Cd(II) has a very long biological half-life (10-30 years) in humans and its toxicity is dependent on the dose, route and duration of exposure. Cd(II) is absorbed from the gastro-intestinal tract primarily by utilizing transporters for essential elements such as iron and zinc, as well as calcium channels. In this review multiple mechanisms of Cd(II) toxicity are discussed, such as interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species, modulation of signal transduction and gene expression, inhibition of DNA repair and DNA methylation, and disruption of E-cadherin-mediated cell-cell adhesion. The role of Cd(II) in apoptosis is also discussed

    Mitigating Effect of <i>Trans</i>-Zeatin on Cadmium Toxicity in <i>Desmodesmus armatus</i>

    No full text
    Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography–mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques
    corecore