177 research outputs found
Fast, exact CMB power spectrum estimation for a certain class of observational strategies
We describe a class of observational strategies for probing the anisotropies
in the cosmic microwave background (CMB) where the instrument scans on rings
which can be combined into an n-torus, the {\em ring torus}. This class has the
remarkable property that it allows exact maximum likelihood power spectrum
estimation in of order operations (if the size of the data set is )
under circumstances which would previously have made this analysis intractable:
correlated receiver noise, arbitrary asymmetric beam shapes and far side lobes,
non-uniform distribution of integration time on the sky and partial sky
coverage. This ease of computation gives us an important theoretical tool for
understanding the impact of instrumental effects on CMB observables and hence
for the design and analysis of the CMB observations of the future. There are
members of this class which closely approximate the MAP and Planck satellite
missions. We present a numerical example where we apply our ring torus methods
to a simulated data set from a CMB mission covering a 20 degree patch on the
sky to compute the maximum likelihood estimate of the power spectrum
with unprecedented efficiency.Comment: RevTeX, 14 pages, 5 figures. A full resolution version of Figure 1
and additional materials are at http://feynman.princeton.edu/~bwandelt/RT
Ammonium ocean following the end-Permian mass extinction
The aftermath of end-Permian mass extinction was marked by a ~5 million year interval of poorly-understood, extreme environments that likely hindered biotic recovery. Contemporary nitrogen isotope variations are considered, using a new conceptual model, to support a scenario that shows intensive nitrate-removal processes gradually depleted the global oceanic nitrate inventory during long-lasting oceanic anoxia. Enhanced nitrogen fixation shifted the oceanic nitrogenous nutrient (nutrient-N) inventory to an ammonium dominated state. Ammonium is toxic to animals and higher plants but fertilizes algae and bacteria. This change in ocean chemistry could account for the intense and unexplained losses of nektonic taxa and the proliferation of microbial blooms in the Early Triassic. The transition from a nitrate ocean to an ammonium ocean was accompanied by a decrease in respiration efficiency of organisms and a shrinking oceanic nutrient-N inventory, ultimately leading to generally low productivity in the Early Triassic oceans. These unappreciated nutrient changes during episodes of prolonged ocean anoxia may be the key life-limiting factor at such times
Three-body halos. V. Computations of continuum spectra for Borromean nuclei
We solve the coordinate space Faddeev equations in the continuum. We employ
hyperspherical coordinates and provide analytical expressions allowing easy
computation of the effective potentials at distances much larger than the
ranges of the interactions where only s-waves in the different Jacobi
coordinates couple. Realistic computations are carried out for the Borromean
halo nuclei 6He (n+n+\alpha) for J\pi = 0+-, 1+-, 2+- and 11Li (n+n+9Li) for
(1/2)+-, (3/2)+-, (5/2)+-. Ground state properties, strength functions, Coulomb
dissociation cross sections, phase shifts, complex S-matrix poles are computed
and compared to available experimental data. We find enhancements of the
strength functions at low energies and a number of low-lying S-matrix poles.Comment: 35 pages, 14 figure
Constraints from Inflation on Scalar-Tensor Gravity Theories
We show how observations of the perturbation spectra produced during
inflation may be used to constrain the parameters of general scalar-tensor
theories of gravity, which include both an inflaton and dilaton field. An
interesting feature of these models is the possibility that the curvature
perturbations on super-horizon scales may not be constant due to non-adiabatic
perturbations of the two fields. Within a given model, the tilt and relative
amplitude of the scalar and tensor perturbation spectra gives constraints on
the parameters of the gravity theory, which may be comparable with those from
primordial nucleosynthesis and post-Newtonian experiments.Comment: LaTeX (with RevTex) 19 pages, 8 uuencoded figures appended, also
available on WWW via http://star.maps.susx.ac.uk/index.htm
Broad-spectrum in vitro activity of macrophage infectivity potentiator inhibitors against Gram-negative bacteria and Leishmania major
Background
The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip.
Objectives
In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens.
Methods
Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens.
Results
Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays.
Conclusions
These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications
Does accelerating universe indicates Brans-Dicke theory
The evolution of universe in Brans-Dicke (BD) theory is discussed in this
paper.
Considering a parameterized scenario for BD scalar field
which plays the role of gravitational "constant" ,
we apply the Markov Chain Monte Carlo method to investigate a global
constraints on BD theory with a self-interacting potential according to the
current observational data: Union2 dataset of type supernovae Ia (SNIa),
high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD),
the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and
the cosmic microwave background (CMB) data. It is shown that an expanded
universe from deceleration to acceleration is given in this theory, and the
constraint results of dimensionless matter density and parameter
are, and
which is consistent with the
result of current experiment exploration, . In
addition, we use the geometrical diagnostic method, jerk parameter , to
distinguish the BD theory and cosmological constant model in Einstein's theory
of general relativity.Comment: 16 pages, 3 figure
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Important marine areas for the conservation of northern rockhopper penguins within the Tristan da Cunha Exclusive Economic Zone
The designation of Marine Protected Areas has become an important approach to conserving marine ecosystems that relies on robust information on the spatial distribution of biodiversity. We used GPS tracking data to identify marine Important Bird and Biodiversity Areas (IBAs) for the endangered northern rockhopper penguin Eudyptes moseleyi within the Exclusive Economic Zone (EEZ) of Tristan da Cunha in the South Atlantic. Penguins were tracked throughout their breeding season from 3 of the 4 main islands in the Tristan da Cunha group. Foraging trips remained largely within the EEZ, with the exception of those from Gough Island during the incubation stage. We found substantial variability in trip duration and foraging range among breeding stages and islands, consistent use of areas among years and spatial segregation of the areas used by neighbouring islands. For colonies with no or insufficient tracking data, we defined marine IBAs based on the mean maximum foraging range and merged the areas identified to propose IBAs around the Tristan da Cunha archipelago and Gough Island. The 2 proposed marine IBAs encompass 2% of Tristan da Cunhaâs EEZ, and are used by all northern rockhopper penguins breeding in the Tristan da Cunha group, representing ~90% of the global population. Currently, the main threat to northern rockhopper penguins within the Tristan da Cunha EEZ is marine pollution from shipping, and the risk of this would be reduced by declaring waters within 50 nautical miles of the coast as âAreas To Be Avoided
Planck 2018 results. IV. Diffuse component separation
We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3 degree regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of beta_d = 1.55 +/- 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of beta_s = -3.1 +/- 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects
Planck 2018 results. III. High Frequency Instrument data processing and frequency maps
This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous 2015 release. They enabled the first significant measurement of the reionization optical depth parameter using HFI data. This paper presents an extensive analysis of systematic effects, including the use of simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved. Calibration, based on the CMB dipole, is now extremely accurate and in the frequency range 100 to 353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than K, an accuracy of order . This is a major legacy from the HFI for future CMB experiments. The removal of bandpass leakage has been improved by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of "frequency maps", which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Simulations reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect. Using these simulations, we measure and correct the small frequency calibration bias induced by this systematic effect at the level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the level
- âŠ