39 research outputs found

    Confirmatory and Exploratory Factor Analysis for Validating the Phlegm Pattern Questionnaire for Healthy Subjects

    Get PDF
    Background. Phlegm pattern questionnaire (PPQ) was developed to evaluate and diagnose phlegm pattern in Korean Medicine and Traditional Chinese Medicine, but it was based on a dataset from patients who visited the hospital to consult with a clinician regarding their health without any strict exclusion or inclusion. In this study, we reinvestigated the construct validity of PPQ with a new dataset and confirmed the feasibility of applying it to a healthy population. Methods. 286 healthy subjects were finally included and their responses to PPQ were acquired. Confirmatory factor analysis (CFA) was conducted and the model fit was discussed. We extracted a new factor structure by exploratory factor analysis (EFA) and compared the two factor structures. Results. In CFA results, the model fit indices are acceptable (RMSEA = 0.074) or slightly less than the good fit values (CFI = 0.839, TLI = 0.860). Many average variances extracted were smaller than the correlation coefficients of the factors, which shows the somewhat insufficient discriminant validity. Conclusions. Through the results from CFA and EFA, this study shows clinically acceptable model fits and suggests the feasibility of applying PPQ to a healthy population with relatively good construct validity and internal consistency

    A screening method for mild cognitive impairment in elderly individuals combining bioimpedance and MMSE

    Get PDF
    We investigated a screening method for mild cognitive impairment (MCI) that combined bioimpedance features and the Korean Mini-Mental State Examination (K-MMSE) score. Data were collected from 539 subjects aged 60 years or older at the Gwangju Alzheimer’s & Related Dementias (GARD) Cohort Research Center, A total of 470 participants were used for the analysis, including 318 normal controls and 152 MCI participants. We measured bioimpedance, K-MMSE, and the Seoul Neuropsychological Screening Battery (SNSB-II). We developed a multiple linear regression model to predict MCI by combining bioimpedance variables and K-MMSE total score and compared the model’s accuracy with SNSB-II domain scores by the area under the receiver operating characteristic curve (AUROC). We additionally compared the model performance with several machine learning models such as extreme gradient boosting, random forest, support vector machine, and elastic net. To test the model performances, the dataset was divided into a training set (70%) and a test set (30%). The AUROC values of SNSB-II scores were 0.803 in both sexes, 0.840 for males, and 0.770 for females. In the combined model, the AUROC values were 0.790 (0.773) for males (and females), which were significantly higher than those from the model including MMSE scores alone (0.723 for males and 0.622 for females) or bioimpedance variables alone (0.640 for males and 0.615 for females). Furthermore, the accuracies of the combined model were comparable to those of machine learning models. The bioimpedance-MMSE combined model effectively distinguished the MCI participants and suggests a technique for rapid and improved screening of the elderly population at risk of cognitive impairment

    Recent Progress in Voice-Based Sasang Constitutional Medicine: Improving Stability of Diagnosis

    Get PDF
    Sasang constitutional medicine is a unique form of tailored medicine in traditional Korean medicine. Voice features have been regarded as an important cue to diagnose Sasang constitution types. Many studies tried to extract quantitative voice features and standardize diagnosis methods; however, they had flaws, such as unstable voice features which vary a lot for the same individual, limited data collected from only few sites, and low diagnosis accuracy. In this paper, we propose a stable diagnosis model that has a good repeatability for the same individual. None of the past studies evaluated the repeatability of their diagnosis models. Although many previous studies used voice features calculated by averaging feature values from all valid frames in monotonic utterance like vowels, we analyse every single feature value from each frame of a sentence voice signal. Gaussian mixture model is employed to deal with a lot of voice features from each frame. Total 15 Gaussian models are used to represent voice characteristics for each constitution. To evaluate repeatability of the proposed diagnosis model, we introduce a test dataset consisting of 10 individuals’ voice recordings with 50 recordings per each individual. Our result shows that the proposed method has better repeatability than the previous study which used averaged features from vowels and the sentence

    Study of a Vocal Feature Selection Method and Vocal Properties for Discriminating Four Constitution Types

    Get PDF
    The voice has been used to classify the four constitution types, and to recognize a subject's health condition by extracting meaningful physical quantities, in traditional Korean medicine. In this paper, we propose a method of selecting the reliable variables from various voice features, such as frequency derivative features, frequency band ratios, and intensity, from vowels and a sentence. Further, we suggest a process to extract independent variables by eliminating explanatory variables and reducing their correlation and remove outlying data to enable reliable discriminant analysis. Moreover, the suitable division of data for analysis, according to the gender and age of subjects, is discussed. Finally, the vocal features are applied to a discriminant analysis to classify each constitution type. This method of voice classification can be widely used in the u-Healthcare system of personalized medicine and for improving diagnostic accuracy

    Body Mass Index and Facial Cues in Sasang Typology for Young and Elderly Persons

    Get PDF
    Facial characteristics may provide reliable information giving an insight into the inner nature of an individual. This study examines the differences in widely used facial metrics, including cheek-to-jaw width ratio (CJWR), width-to-height ratio (WHR), perimeter-to-area ratio (PAR), and facial masculinity indexes across Sasang constitutional types, to investigate the association between these facial cues and body mass index (BMI) and develop a predictive model for Sasang typing. 2D images of 911 participants were analyzed. The results indicated that TaeEum (TE) type generally has a squarer face, with the male TE type having a squarer and wider face than that of both SoYang (SY) and SoEum (SE) types. Male TE type has longer eyes than that of the SE type, and the lower face of the female TE type is longer than that of the SY type. PAR, WHR, CJWR, and eye size had associations with BMI, and the magnitude of correlation of CJWR in Korean men were twofold higher than that of the Caucasian and African men. BMI and facial metrics including PAR, WHR, CJWR, and eye size were good predictors for TE type, and the most parsimonious model for TE typing included BMI and CJWR with high predictive performances

    Predicting Sasang Constitution Using Body-Shape Information

    Get PDF
    Objectives. Body measurement plays a pivotal role not only in the diagnosis of disease but also in the classification of typology. Sasang constitutional medicine, which is one of the forms of Traditional Korean Medicine, is considered to be strongly associated with body shape. We attempted to determine whether a Sasang constitutional analytic tool based on body shape information (SCAT-B) could predict Sasang constitution (SC). Methods. After surveying 23 Oriental medical clinics, 2,677 subjects were recruited and body shape information was collected. The SCAT-Bs for males and females were developed using multinomial logistic regression. Stepwise forward-variable selection was applied using the score statistic and Wald’s test. Results. The predictive rates of the SCAT-B for Tae-eumin (TE), Soeumin (SE), and Soyangin (SY) types in males and females were 80.2%, 56.9%, and 37.7% (males) and 69.3%, 38.9%, and 50.0% (females) in the training set and were 74%, 70.1%, and 35% (males), and 67.4%, 66.3%, and 53.7% (females) in the test set, respectively. Higher constitutional probability scores showed a trend for association with higher predictability. Conclusions. This study shows that the Sasang constitutional analytic tool, which is based on body shape information, may be relatively highly predictive of TE type but may be less predictive when used for SY type

    The Concept of Sasang Health Index and Constitution-Based Health Assessment: An Integrative Model with Computerized Four Diagnosis Methods

    Get PDF
    Sasang constitutional medicine (SCM) shares its philosophy with that of personalized medicine: it provides constitution-specific treatment and healthcare individualized for each patient. In this work, we propose the concept of the Sasang Health Index (SHI) as an attempt to assess the individualized health status in the framework of SCM. From the target population of females in their fifties and older, we recruited 298 subjects and collected their physiological data, including complexion, radial pulse, and voice, and their questionnaire responses. The health status of each subject was evaluated by two Korean medical doctors independently, and the SHI model was obtained by combining all the integrative features of the phenotype data using a regression technique. As a result, most subjects belonged to either the healthy, subhealthy, or slightly diseased group, and the intraclass correlation coefficient between the two doctors’ health scoring reached 0.95. We obtained an SHI model for each constitution type with adjusted R-squares of 0.50, 0.56, and 0.30, for the TE, SE, and SY constitution types, respectively. In the proposed SHI model, the significant characteristics used in the health assessment consisted of constitution-specific features in accordance with the classic literature and features common to all the constitution types

    MOESM3 of Validation of the qi blood yin yang deficiency questionnaire on chronic fatigue

    No full text
    Additional file 3. Complaints and symptoms of Qi blood Yin Yang deficiency questionnaire
    corecore