85 research outputs found

    Generalized Framework for Syntax-Based Relation Mining

    Full text link

    Automated Mapping of Vulnerability Advisories onto their Fix Commits in Open Source Repositories

    Full text link
    The lack of comprehensive sources of accurate vulnerability data represents a critical obstacle to studying and understanding software vulnerabilities (and their corrections). In this paper, we present an approach that combines heuristics stemming from practical experience and machine-learning (ML) - specifically, natural language processing (NLP) - to address this problem. Our method consists of three phases. First, an advisory record containing key information about a vulnerability is extracted from an advisory (expressed in natural language). Second, using heuristics, a subset of candidate fix commits is obtained from the source code repository of the affected project by filtering out commits that are known to be irrelevant for the task at hand. Finally, for each such candidate commit, our method builds a numerical feature vector reflecting the characteristics of the commit that are relevant to predicting its match with the advisory at hand. The feature vectors are then exploited for building a final ranked list of candidate fixing commits. The score attributed by the ML model to each feature is kept visible to the users, allowing them to interpret of the predictions. We evaluated our approach using a prototype implementation named Prospector on a manually curated data set that comprises 2,391 known fix commits corresponding to 1,248 public vulnerability advisories. When considering the top-10 commits in the ranked results, our implementation could successfully identify at least one fix commit for up to 84.03% of the vulnerabilities (with a fix commit on the first position for 65.06% of the vulnerabilities). In conclusion, our method reduces considerably the effort needed to search OSS repositories for the commits that fix known vulnerabilities

    Low penetrance and effect on protein secretionof LGI1 mutations causing autosomal dominantlateral temporal epilepsy

    Get PDF
    Purpose: To describe the clinical and genetic findings of four families with autosomal dominant lateral temporal epilepsy. Methods: A personal and family history was obtained from each affected and unaffected subject along with a physical and neurologic examination. Routine electroencephalography and magnetic resonance imaging (MRI) studies were performed in almost all patients. DNAs from family members were screened for LGI1 mutations. The effects of mutations on Lgi1 protein secretion were determined in transfected culture cells. Key Findings: The four families included a total of 11 patients (two deceased), six of whom had lateral temporal epilepsy with auditory aura. Age at onset was in the second decade of life; seizures were well controlled by antiepileptic treatment and MRI studies were normal. We found two pathogenic LGI1 mutations with uncommonly low penetrance: the R136W mutation, previously detected in a sporadic case with telephone-induced partial seizures, gave rise to the epileptic phenotype in three of nine mutation carriers in one family; the novel C179R mutation caused epilepsy in an isolated patient from a family where the mutation segregated. Another novel pathogenic mutation, I122T, and a nonsynonymous variant, I359V, were found in the two other families. Protein secretion tests showed that the R136W and I122T mutations inhibited secretion of the mutant proteins, whereas I359V had no effect on protein secretion; C179R was not tested, because of its predictable effect on protein folding. Significance: These findings suggest that some LGI1 mutations may have a weak penetrance in families with complex inheritance pattern, or isolated patients, and that the protein secretion test, together with other predictive criteria, may help recognize pathogenic LGI1 mutations. KEY WORDS: Autosomal dominant lateral temporal epilepsy, LGI1, Mutation, Low penetrance, Protein secretion

    The clinical phenotype of autosomal dominant lateral temporal lobe epilepsy related to reelin mutations

    Get PDF
    Objective To describe the clinical phenotype of 7 families with Autosomal Dominant Lateral Temporal Lobe Epilepsy (ADLTE) related to Reelin (RELN) mutations comparing the data with those observed in 12 LGI1-mutated pedigrees belonging to our series. Methods Out of 40 Italian families with ADLTE, collected by epileptologists participating in a collaborative study of the Commission for Genetics of the Italian League against Epilepsy encompassing a 14-year period (2000\u20132014), 7 (17.5%) were found to harbor heterozygous RELN mutations. The whole series also included 12 (30%) LGI1 mutated families and 21 (52.5%) non-mutated pedigrees. The clinical, neurophysiological, and neuroradiological findings of RELN and LGI1 mutated families were analyzed. Results Out of 28 affected individuals belonging to 7 RELN mutated families, 24 had sufficient clinical data available for the study. In these patients, the epilepsy onset occurred at a mean age of 20 years, with focal seizures characterized by auditory auras in about 71% of the cases, associated in one-third of patients with aphasia, visual disturbances or other less common symptoms (vertigo or d\ue9j\ue0-vu). Tonic\u2013clonic seizures were reported by almost all patients (88%), preceded by typical aura in 67% of cases. Seizures were precipitated by environmental noises in 8% of patients and were completely or almost completely controlled by antiepileptic treatment in the vast majority of cases (96%). The interictal EEG recordings showed epileptiform abnormalities or focal slow waves in 80% of patients, localized over the temporal regions, with marked left predominance and conventional 1,5T MRI scans were not contributory. By comparing these findings with those observed in families with LGI1 mutations, we did not observe significant differences except for a higher rate of left-sided EEG abnormalities in the RELN group. Significance Heterozygous RELN mutations cause a typical ADLTE syndrome, indistinguishable from that associated with LGI1 mutations

    Association of intronic variants of the KCNAB1 gene with lateral temporal epilepsy.

    Get PDF
    The KCNAB1 gene is a candidate susceptibility factor for lateral temporal epilepsy (LTE) because of its functional interaction with LGI1, the gene responsible for the autosomal dominant form of LTE. We investigated association between polymorphic variants across the KCNAB1 gene and LTE. The allele and genotype frequencies of 14 KCNAB1 intronic SNPs were determined in 142 Italian LTE patients and 104 healthy controls and statistically evaluated. Single SNP analysis revealed one SNP (rs992353) located near the 3'end of KCNAB1 slightly associated with LTE after multiple testing correction (odds ratio=2.25; 95% confidence interval 1.26-4.04; P=0.0058). Haplotype analysis revealed two haplotypes with frequencies higher in cases than in controls, and these differences were statistically significant after permutation tests (Psim=0.047 and 0.034). One of these haplotypes was shown to confer a high risk for the syndrome (odds ratio=12.24; 95% confidence interval 1.32-113.05) by logistic regression analysis. These results support KCNAB1 as a susceptibility gene for LTE, in agreement with previous studies showing that this gene may alter susceptibility to focal epilepsy

    Perampanel as precision therapy in rare genetic epilepsies

    Get PDF
    OBJECTIVE: Perampanel, an antiseizure drug with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Epilepsies with loss of γ-aminobutyric acid inhibition (e.g., SCN1A), overactive excitatory neurons (e.g., SCN2A, SCN8A), and variants in glutamate receptors (e.g., GRIN2A) hold special interest. We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. METHODS: This multicenter project was based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel were collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. RESULTS: A total of 137 patients with 79 different etiologies, aged 2 months to 61 years (mean = 15.48 ± 9.9 years), were enrolled. The mean dosage was 6.45 ± 2.47 mg, and treatment period was 2.0 ± 1.78 years (1.5 months-8 years). Sixty-two patients (44.9%) were treated for >2 years. Ninety-eight patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61% ± 34.36%. Sixty patients (43.5%) sustained >75% reduction in seizure frequency, including 38 (27.5%) with >90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, and NEU1. Eleven of 17 (64.7%) patients with Dravet syndrome due to an SCN1A pathogenic variant were responders to perampanel treatment; 35.3% of them had >90% seizure reduction. Other etiologies remarkable for >90% reduction in seizures were GNAO1 and PIGA. Fourteen patients had a continuous spike and wave during sleep electroencephalographic pattern, and in six subjects perampanel reduced epileptiform activity. SIGNIFICANCE: Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1, and POLG, suggesting a targeted effect related to glutamate transmission

    Sex-based electroclinical differences and prognostic factors in epilepsy with eyelid myoclonia

    Get PDF
    Although a striking female preponderance has been consistently reported in epilepsy with eyelid myoclonia (EEM), no study has specifically explored the variability of clinical presentation according to sex in this syndrome. Here, we aimed to investigate sex-specific electroclinical differences and prognostic determinants in EEM. Data from 267 EEM patients were retrospectively analyzed by the EEM Study Group, and a dedicated multivariable logistic regression analysis was developed separately for each sex. We found that females with EEM showed a significantly higher rate of persistence of photosensitivity and eye closure sensitivity at the last visit, along with a higher prevalence of migraine with/without aura, whereas males with EEM presented a higher rate of borderline intellectual functioning/intellectual disability. In female patients, multivariable logistic regression analysis revealed age at epilepsy onset, eyelid myoclonia status epilepticus, psychiatric comorbidities, and catamenial seizures as significant predictors of drug resistance. In male patients, a history of febrile seizures was the only predictor of drug resistance. Hence, our study reveals sex-specific differences in terms of both electroclinical features and prognostic factors. Our findings support the importance of a sex-based personalized approach in epilepsy care and research, especially in genetic generalized epilepsies

    The spectrum of epilepsy with eyelid myoclonia: delineation of disease subtypes from a large multicenter study

    Get PDF
    Objective Epilepsy with eyelid myoclonia (EEM) has been associated with marked clinical heterogeneity. Early epilepsy onset has been recently linked to lower chances of achieving sustained remission and to a less favorable neuropsychiatric outcome. However, much work is still needed to better delineate this epilepsy syndrome. Methods In this multicenter retrospective cohort study, we included 267 EEM patients from nine countries. Data on electroclinical and demographic features, intellectual functioning, migraine with or without aura, family history of epilepsy, and epilepsy syndromes in relatives were collected in each patient. The impact of age at epilepsy onset (AEO) on EEM clinical features was investigated, along with the distinctive clinical characteristics of patients showing sporadic myoclonia involving body regions other than eyelids (body-MYO). Results Kernel density estimation revealed a trimodal distribution of AEO, and Fisher-Jenks optimization disclosed three EEM subgroups: early onset (EO-EEM), intermediate onset (IO-EEM), and late onset (LO-EEM). EO-EEM was associated with the highest rate of intellectual disability, antiseizure medication refractoriness, and psychiatric comorbidities and with the lowest rate of family history of epilepsy. LO-EEM was associated with the highest proportion of body-MYO and generalized tonic-clonic seizures (GTCS), whereas IO-EEM had the lowest observed rate of additional findings. A family history of EEM was significantly more frequent in IO-EEM and LO-EEM compared with EO-EEM. In the subset of patients with body-MYO (58/267), we observed a significantly higher rate of migraine and GTCS but no relevant differences in other electroclinical features and seizure outcome. Significance Based on AEO, we identified consistent EEM subtypes characterized by distinct electroclinical and familial features. Our observations shed new light on the spectrum of clinical features of this generalized epilepsy syndrome and may help clinicians toward a more accurate classification and prognostic profiling of EEM patients

    Perampanel as Precision Therapy in Rare Genetic Epilepsies

    Get PDF
    Objective: Perampanel, an antiseizure drug with AMPA-receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Special interest holds epilepsies with loss of GABA inhibition (e.g. SCN1A), overactive excitatory neurons (e.g. SCN2A, SCN8A ), and variants in glutamate receptors (e.g. GRIN2A). We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. Methods: A multicenter project based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel was collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. Results: 137 patients, with 79 different etiologies, aged 2 months-61 years (mean 15.48±9.9) were enrolled. The mean dosage was 6.45±2.47 mg, and treatment period was 2.0±1.78 years (1.5 months-8 years). 62 patients (44.9%) were treated for >2 years. 98 patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61±34.36%. 60 patients (43.5%) sustained over 75% reduction in seizure frequency, including 38 (27.5%) with > 90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, NEU1. 11/17 (64.7%) of patients with SCN1A, 35.3% of which had over 90% seizure reduction. Other etiologies remarkable for over 90% reduction in seizures were GNAO1 and PIGA. 14 patients had a CSWS EEG pattern and in 6 subjects perampanel reduced epileptiform activity. Significance: Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1 and POLG, suggesting a targeted effect related to glutamate transmission

    Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several complications of diabetes mellitus (DM) e.g. nephropathy (DN) have been linked to oxidative stress. Ozone, by means of oxidative preconditioning, may exert its protective effects on DN.</p> <p>Aim</p> <p>The aim of the present work is to study the possible role of ozone therapy in ameliorating oxidative stress and inducing renal antioxidant defence in streptozotocin (STZ)-induced diabetic rats.</p> <p>Methods</p> <p>Six groups (n = 10) of male Sprague Dawley rats were used as follows: Group C: Control group. Group O: Ozone group, in which animals received ozone intraperitoneally (i.p.) (1.1 mg/kg). Group D: Diabetic group, in which DM was induced by single i.p. injections of streptozotocin (STZ). Group DI: Similar to group D but animals also received subcutaneous (SC) insulin (0.75 IU/100 gm BW.). Group DO: In which diabetic rats received the same dose of ozone, 48 h after induction of diabetes. Group DIO, in which diabetic rats received the same doses of insulin and ozone, respectively. All animals received daily treatment for six weeks. At the end of the study period (6 weeks), blood pressure, blood glycosylated hemoglobin (HbA<sub>1c</sub>), serum creatinine, blood urea nitrogen (BUN), kidney tissue levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx), aldose reductase (AR) activities and malondialdehyde (MDA) concentration were measured.</p> <p>Results</p> <p>Induction of DM in rats significantly elevated blood pressure, HbA<sub>1c</sub>, BUN, creatinine and renal tissue levels of MDA and AR while significantly reducing SOD, CAT and GPx activities. Either Insulin or ozone therapy significantly reversed the effects of DM on all parameters; in combination (DIO group), they caused significant improvements in all parameters in comparison to each alone.</p> <p>Conclusions</p> <p>Ozone administration in conjunction with insulin in DM rats reduces oxidative stress markers and improves renal antioxidant enzyme activity which highlights its potential uses in the regimen for treatment of diabetic patients.</p
    • …
    corecore