19 research outputs found

    Linked Pharmacometric-Pharmacoeconomic Modeling and Simulation in Clinical Drug Development

    Get PDF
    Market access and pricing of pharmaceuticals are increasingly contingent on the ability to demonstrate comparative effectiveness and cost-effectiveness. As such, it is widely recognized that predictions of the economic potential of drug candidates in development could inform decisions across the product life cycle. This may be challenging when safety and efficacy profiles in terms of the relevant clinical outcomes are unknown or highly uncertain early in product development. Linking pharmacometrics and pharmacoeconomics, such that outputs from pharmacometric models serve as inputs to pharmacoeconomic models, may provide a framework for extrapolating from early-phase studies to predict economic outcomes and characterize decision uncertainty. This article reviews the published studies that have implemented this methodology and used simulation to inform drug development decisions and/or to optimize the use of drug treatments. Some of the key practical issues involved in linking pharmacometrics and pharmacoeconomics, including the choice of final outcome measures, methods of incorporating evidence on comparator treatments, approaches to handling multiple intermediate end points, approaches to quantifying uncertainty, and issues of model validation are also discussed. Finally, we have considered the potential barriers that may have limited the adoption of this methodology and suggest that closer alignment between the disciplines of clinical pharmacology, pharmacometrics, and pharmacoeconomics, may help to realize the potential benefits associated with linked pharmacometric-pharmacoeconomic modeling and simulation

    Clinical Pharmacology of Therapeutic Proteins

    No full text

    Studying the Effects of Personalized Language and Worked Examples in the Context of a Web-Based Intelligent Tutor

    No full text
    Previous studies have demonstrated the learning benefit of personalized language and worked examples. However, previous investigators have primarily been interested in how these interventions support students as they problem solve with no other cognitive support. We hypothesized that personalized language added to a web-based intelligent tutor and worked examples provided as complements to the tutor would improve student (e- )learning. However, in a 2 x 2 factorial study, we found that personalization and worked examples had no significant effects on learning. On the other hand, there was a significant difference between the pretest and posttest across all conditions, suggesting that the online intelligent tutor present in all conditions did make a difference in learning. We conjecture why personalization and, especially, the worked examples did not have the hypothesized effect in this preliminary experiment, and discuss a new study we have begun to further investigate these effects
    corecore