35 research outputs found

    High-Fidelity Tissue Engineering of Patient-Specific Auricles for Reconstruction of Pediatric Microtia and Other Auricular Deformities

    Get PDF
    Introduction: Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and their respective molds that would precisely mimic the normal anatomy of the patient-specific external ear as well as recapitulate the complex biomechanical properties of native auricular elastic cartilage while avoiding the morbidity of traditional autologous reconstructions. Methods: Three-dimensional structures of normal pediatric ears were digitized and converted to virtual solids for mold design. Image-based synthetic reconstructions of these ears were fabricated from collagen type I hydrogels. Half were seeded with bovine auricular chondrocytes. Cellular and acellular constructs were implanted subcutaneously in the dorsa of nude rats and harvested after 1 and 3 months. Results: Gross inspection revealed that acellular implants had significantly decreased in size by 1 month. Cellular constructs retained their contour/projection from the animals' dorsa, even after 3 months. Post-harvest weight of cellular constructs was significantly greater than that of acellular constructs after 1 and 3 months. Safranin O-staining revealed that cellular constructs demonstrated evidence of a self-assembled perichondrial layer and copious neocartilage deposition. Verhoeff staining of 1 month cellular constructs revealed de novo elastic cartilage deposition, which was even more extensive and robust after 3 months. The equilibrium modulus and hydraulic permeability of cellular constructs were not significantly different from native bovine auricular cartilage after 3 months. Conclusions: We have developed high-fidelity, biocompatible, patient-specific tissue-engineered constructs for auricular reconstruction which largely mimic the native auricle both biomechanically and histologically, even after an extended period of implantation. This strategy holds immense potential for durable patient-specific tissue-engineered anatomically proper auricular reconstructions in the future. © 2013 Reiffel et al

    Articular cartilage and changes in Arthritis: Cell biology of osteoarthritis

    Get PDF
    The reaction patterns of chondrocytes in osteoarthritis can be summarized in five categories: (1) proliferation and cell death (apoptosis); changes in (2) synthetic activity and (3) degradation; (4) phenotypic modulation of the articular chondrocytes; and (5) formation of osteophytes. In osteoarthritis, the primary responses are reinitiation of synthesis of cartilage macromolecules, the initiation of synthesis of types IIA and III procollagens as markers of a more primitive phenotype, and synthesis of active proteolytic enzymes. Reversion to a fibroblast-like phenotype, known as 'dedifferentiation', does not appear to be an important component. Proliferation plays a role in forming characteristic chondrocyte clusters near the surface, while apoptosis probably occurs primarily in the calcified cartilage

    Biologischer Bandscheibenersatz: Quantitative Messmethoden und Langzeit-Outcome in vivo

    No full text
    corecore