14 research outputs found
Pulsed Electromagnetic Fields Improve Tenogenic Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells :a Potential Strategy for Tendon Repair-An In Vitro Study
Tendon repair is a challenging procedure in orthopaedics. The use of mesenchymal stem cells (MSCs) and pulsed electromagnetic fields (PEMF) in tendon regeneration is still investigational. In this perspective, MSCs isolated from the human umbilical cord (UC) may represent a possible candidate for tendon tissue engineering. The aim of the study is to evaluate the effect of low-frequency PEMF on tenogenic differentiation of MSCs isolated from the human umbilical cord (UC-MSCs) in vitro. 15 fresh UC samples from women with healthy pregnancies were retrieved at the end of caesarean deliveries. UC samples were manually minced into small fragments (less than 4\u2009mm length) and cultured in MSC expansion medium. Part of the UC-MSCs was subsequently cultured with PEMF and tenogenic growth factors. UC-MSCs were subjected to pulsed electromagnetic fields for 2\u2009h/day, 4\u2009h/day, or 8\u2009h/day. UC-MSCs cultured with FGF-2 and stimulated with PEMF showed a greater production of collagen type I and scleraxis. The prolonged exposure to PEMF was also related to the greatest expression of tenogenic markers. Thus, the exposure to PEMF provides a positive preconditioning biophysical stimulus, which may enhance UC-MSC tenogenic potential
One stage osteochondral repair with cartilage fragments in a hybrid scaffold: rabbit and goat animal model
One-step techniques are a promising approach for cartilage repair. This study introduces a simple chondrocyte culturefree approach with autologous cartilage fragments loaded onto a mixed scaffold composed of high molecular weight hyaluronic acid derivative felt (Hyaff-11), injectable human fibrin glue (Tisseel) and autologous platelet-rich plasma (PRP). Nanoindentation of goat samples showed mechanical properties close to native goat-trochelarcartilag
Human cartilage fragments in a composite scaffold for single-stage cartilage repair : An in vitro study of the chondrocyte migration and the influence of TGF-β1 and G-CSF
Purpose: Minced chondral fragments are becoming popular as a source of cells for cartilage repair, as a growing interest is developing towards one-stage procedures to treat cartilage lesions. The purpose of this study is to (A) compare cell outgrowth from cartilage fragments of adult and young donors using two different types of scaffolds and (B) evaluate the influence of transforming-growth-factor-\u3b21 (TGF-\u3b21) and granulocyte colony-stimulating factor (G-CSF) on chondrocyte behaviour. Methods: In part (A) cartilage fragments from adult and young donors were either loaded onto an HA-derivative injectable paste scaffold or onto an HA-derivative membrane scaffold. Construct sections were then examined for cell counting after 1, 2 and 3 months. In part (B) only membrane scaffolds were prepared using cartilage fragments from young donors. Constructs were cultured either in standard growth medium or in the presence of specific growth factors, such as TGF-\u3b21 or G-CSF or TGF-\u3b21 + G-CSF. After 1 month, construct sections were examined for cell counting. Expression of chondrocyte markers (SOX9, CD151, CD49c) and proliferative markers (\u3b2-catenin, PCNA) was assessed using immunofluorescence techniques, both in unstimulated construct sections and in cells from unstimulated and stimulated construct cultures. Results: Part (A): histological analysis showed age-dependent and time-dependent chondrocyte migration. A significant difference (p < 0.05) was observed between young and older donors at the same time point. No difference was detected between the two types of scaffolds within the same group at the same time point. Part (B): after 1 month, the number of migrating cells/area significantly increased due to exposure to TGF-\u3b21 and/or G-CSF (p < 0.05). Immunofluorescence revealed that outgrowing cells from unstimulated scaffold sections were positive for SOX9, CD151, CD49c and G-CSF receptor. Immunofluorescence of cells from construct cultures showed an increase in \u3b2-catenin in all stimulated groups and an increased PCNA expression in G-CSF-exposed cultures (p < 0.05). Conclusion: Outgrowing cells may represent a subset of chondrocytes undergoing a phenotypic shift towards a proliferative state. TGF-\u3b21, and to a greater extent G-CSF, may accelerate this outgrowth. The clinical relevance of this study may involve a potential future clinical application of scaffolds preloaded with growth factors as an additional coating for chondral fragments. Indeed, a controlled delivery of G-CSF, widely employed in various clinical settings, might improve the repair process driven by minced human cartilage fragments during one-stage cartilage repair. \ua9 2012 Springer-Verlag Berlin Heidelberg
One-step osteochondral repair with cartilage fragments in a composite scaffold
Purpose. This study proposes a single-step therapeutic approach for osteochondral defects using autologous cartilage fragments loaded onto a scaffold composed of a hyaluronic acid (HA) derivative, human fibrin glue (FG) and autologous platelet-rich-plasma (PRP), in a rabbit model. The aim is to demonstrate the in vitro outgrowth of chondrocytes from cartilage fragments and the in vivo formation of a functional repair tissue.
Methods. In vitro: minced articular cartilage was loaded onto two different types of scaffold (paste or membrane) according to two different HA preparations (injectable HA-derivative or HA-derivative felt). In vivo: trochlear osteochondral defects were created in 50 adult rabbits, which were then assigned to 5 different treatment groups: cartilage fragments loaded onto membrane scaffolds with FG (Group 1) or without FG (Group 2); membrane scaffolds alone with FG (Group 3) or without FG (Group 4); empty defects (Group 5). Membrane scaffolds were used "in vivo" for simpler preparation and better adhesive properties. Repair processes were evaluated histologically and by immunohistochemistry at 1, 3, and 6 months.
Results. An in vitro time-dependent cell outgrowth from cartilage fragments was observed with both types of scaffolds. At 6 months, in vivo, cartilage fragment-loaded scaffolds induced significantly better repair tissue than the scaffold alone using histological scoring. Repair in Group 2 was superior to that in any of the control groups (p < 0.05).
Conclusion. Autologous cartilage fragments loaded onto an HA felt/FG/PRP-scaffold provided an efficient cell source, and allowed for an improvement of the repair process of ostechondral defects in a rabbit model. Human FG, however, hampered the rabbit healing process. These results may have clinical relevance as they show the potential of a novel one-stage repair technique for osteochondral defects
One-step cartilage repair with minced chondral fragment on a composite scaffold: an in vitro human study at low oxygen tension
Minced cartilage fragments are a viable cell source for one stage cartilage repair. However, the joint surface is a low oxygen tension microenvironment and little evidence is present in literature regarding the behaviour of cartilage fragments in this peculiar condition. The aim of the study is i) to verify if low oxygen tension could negatively influence chondrocyte outgrowth from cartilage fragments into a Hyaluronic-Acid(HA)/fibrin scaffold and ii) to evaluate its effects on the behaviour of migrating chondrocyte, compared to normoxic condition. A slight decrease in chondrocyte migration and proliferation was observed in low oxygen tension cultures. Conversely, an increase in the expression of SOX9, \u3b2-catenin, HIFs, collagen-I and II (p<0.05) in migrating chondrocytes from low oxygen tension cultures was present. Thus, a long term- exposure at low oxygen tension seems to improve the chondrocytic phenotype expression of cell outgrowing from cartilage fragments onto a HA/fibrin scaffold
Autologous cartilage fragments in a composite scaffold for one stage osteochondral repair in a goat model
We propose a culture-free approach to osteochondral repair with minced autologous cartilage fragments loaded onto a scaffold composed of a hyaluronic acid (HA)-derived membrane, platelet-rich fibrin matrix (PRFM) and fibrin glue. The aim of the study was to demonstrate in vitro the outgrowth of chondrocytes from cartilage fragments onto this scaffold and, in vivo, the formation of functional repair tissue in goat osteochondral defects. Two sections were considered: 1) in vitro: minced articular cartilage from goat stifle joints was loaded onto scaffolds, cultured for 1 or 2 months, and then evaluated histologically and immunohistochemically; 2) in vivo: 2 unilateral critically-sized trochlear osteochondral defects were created in 15 adult goats; defects were treated with cartilage fragments embedded in the scaffold (Group 1), with the scaffold alone (Group 2), or untreated (Group 3). Repair processes were evaluated morphologically, histologically, immunohistochemically and biomechanically at 1, 3, 6 and 12 months. We found that in vitro, chondrocytes from cartilage fragments migrated to the scaffold and, at 2 months, matrix positive for collagen type II was observed in the constructs. In vivo, morphological and histological assessment demonstrated that cartilage fragment-loaded scaffolds led to the formation of functional hyaline-like repair tissue. Repair in Group 1 was superior to that of control groups, both histologically and mechanically. Autologous cartilage fragments loaded onto an HA/PRFM/fibrin glue scaffold provided a viable cell source and allowed for an improvement of the repair process of osteochondral defects in a goat model, representing an effective alternative for one-stage repair of osteochondral lesions. Discussion pp. 31-
Autologous cartilage fragments in a composite scaffold for one stage osteochondral repair in a goat model
We propose a culture-free approach to osteochondral repair with minced autologous cartilage fragments loaded onto a scaffold composed of a hyaluronic acid (HA)-derived membrane, platelet-rich fibrin matrix (PRFM) and fibrin glue. The aim of the study was to demonstrate in vitro the outgrowth of chondrocytes from cartilage fragments onto this scaffold and, in vivo, the formation of functional repair tissue in goat osteochondral defects. Two sections were considered: 1) in vitro: minced articular cartilage from goat stifle joints was loaded onto scaffolds, cultured for 1 or 2 months, and then evaluated histologically and immunohistochemically; 2) in vivo: 2 unilateral criticallysized trochlear osteochondral defects were created in 15 adult goats; defects were treated with cartilage fragments embedded in the scaffold (Group 1), with the scaffold alone (Group 2), or untreated (Group 3). Repair processes were evaluated morphologically, histologically, immunohistochemically and biomechanically at 1, 3, 6 and 12 months. We found that in vitro, chondrocytes from cartilage fragments migrated to the scaffold and, at 2 months, matrix positive for collagen type II was observed in the constructs. In vivo, morphological and histological assessment demonstrated that cartilage fragment-loaded scaffolds led to the formation of functional hyaline-like repair tissue. Repair in Group 1 was superior to that of control groups, both histologically and mechanically. Autologous cartilage fragments loaded onto an HA/ PRFM/fibrin glue scaffold provided a viable cell source and allowed for an improvement of the repair process of osteochondral defects in a goat model, representing an effective alternative for one-stage repair of osteochondral lesion
Bone marrow derived stem cells in joint and bone diseases : a concise review
Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues