40 research outputs found

    A non-canonical ESCRT pathway, including His domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC Class I

    Get PDF
    The Kaposi’s sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC Class I. K3 is an E3 ubiquitin ligase that promotes K63-linked polyubiquitination of MHC Class I, providing the signal for clathrin mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC Class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNA interference-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC Class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20/CHMP6, failed to prevent the loss of MHC Class I from the cell surface. Depletion of His domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC Class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild type and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC Class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6

    Glycosaminoglycan Interactions in Murine Gammaherpesvirus-68 Infection

    Get PDF
    Glycosaminoglycans (GAGs) commonly participate in herpesvirus entry. They are thought to provide a reversible attachment to cells that promotes subsequent receptor binding. Murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts and epithelial cells is highly GAG-dependent. This is a function of the viral gp150, in that gp150-deficient mutants are much less GAG-dependent than wild-type. Here we show that the major MHV-68 GAG-binding protein is not gp150 but gp70, a product of ORF4. Surprisingly, ORF4-deficient MHV-68 showed normal cell binding and was more sensitive than wild-type to inhibition by soluble heparin rather than less. Thus, the most obvious viral GAG interaction made little direct contribution to infection. Indeed, a large fraction of the virion gp70 had its GAG-binding domain removed by post-translational cleavage. ORF4 may therefore act mainly to absorb soluble GAGs and prevent them from engaging gp150 prematurely. In contrast to gp70, gp150 bound poorly to GAGs, implying that it provides little in the way of adhesion. We hypothesize that it acts instead as a GAG-sensitive switch that selectively activates MHV-68 entry at cell surfaces

    Multiple Functions for ORF75c in Murid Herpesvirus-4 Infection

    Get PDF
    All gamma-herpesviruses encode at least one homolog of the cellular enzyme formyl-glycineamide-phosphoribosyl-amidotransferase. Murid herpesvirus-4 (MuHV-4) encodes 3 (ORFs 75a, 75b and 75c), suggesting that at least some copies have acquired new functions. Here we show that the corresponding proteins are all present in virions and localize to infected cell nuclei. Despite these common features, ORFs 75a and 75b did not substitute functionally for a lack of ORF75c, as ORF75c virus knockouts were severely impaired for lytic replication in vitro and for host colonization in vivo. They showed 2 defects: incoming capsids failed to migrate to the nuclear margin following membrane fusion, and genomes that did reach the nucleus failed to initiate normal gene expression. The latter defect was associated with a failure of in-coming virions to disassemble PML bodies. The capsid transport deficit seemed to be functionally more important, since ORF75c− MuHV-4 infected both PML+ and PML− cells poorly. The original host enzyme has therefore evolved into a set of distinct and multi-functional viral tegument proteins. One important function is moving incoming capsids to the nuclear margin for viral genome delivery

    Murine Gammaherpesvirus-68 Inhibits Antigen Presentation by Dendritic Cells

    Get PDF
    Dendritic cells (DCs) play a central role in initiating adaptive immunity. Murine gammaherpesvirus-68 (MHV-68), like many persistent viruses, infects DCs during normal host colonization. It therefore provides a means to understanding what host and viral genes contribute to this aspect of pathogenesis. The infected DC phenotype is likely to depend on whether viral gene expression is lytic or latent and whether antigen presentation is maintained. For MHV-68, neither parameter has been well defined. Here we show that MHV-68 infects immature but not mature bone marrow-derived DCs. Infection was predominantly latent and these DCs showed no obvious defect in antigen presentation. Lytically infected DCs were very different. These down-regulated CD86 and MHC class I expression and presented a viral epitope poorly to CD8+ T cells. Antigen presentation improved markedly when the MHV-68 K3 gene was disrupted, indicating that K3 fulfils an important function in infected DCs. MHV-68 infects only a small fraction of the DCs present in lymphoid tissue, so K3 expression is unlikely to compromise significantly global CD8+ T cell priming. Instead it probably helps to maintain lytic gene expression in DCs once CD8+ T cell priming has occurred

    An In Vitro System for Studying Murid Herpesvirus-4 Latency and Reactivation

    Get PDF
    The narrow species tropisms of Epstein-Barr Virus (EBV) and the Kaposi's Sarcoma -associated Herpesvirus (KSHV) have made Murid Herpesvirus-4 (MuHV-4) an important tool for understanding how gammaherpesviruses colonize their hosts. However, while MuHV-4 pathogenesis studies can assign a quantitative importance to individual genes, the complexity of in vivo infection can make the underlying mechanisms hard to discern. Furthermore, the lack of good in vitro MuHV-4 latency/reactivation systems with which to dissect mechanisms at the cellular level has made some parallels with EBV and KSHV hard to draw. Here we achieved control of the MuHV-4 lytic/latent switch in vitro by modifying the 5′ untranslated region of its major lytic transactivator gene, ORF50. We terminated normal ORF50 transcripts by inserting a polyadenylation signal and transcribed ORF50 instead from a down-stream, doxycycline-inducible promoter. In this way we could establish fibroblast clones that maintained latent MuHV-4 episomes without detectable lytic replication. Productive virus reactivation was then induced with doxycycline. We used this system to show that the MuHV-4 K3 gene plays a significant role in protecting reactivating cells against CD8+ T cell recognition

    Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    A Gammaherpesviral Internal Repeat Contributes to Latency Amplification

    Get PDF
    BACKGROUND: Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. The genomes of gammaherpesviruses contain variable numbers of internal repeats whose precise role for in vivo pathogenesis is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We used infection of laboratory mice with murine gammaherpesvirus 68 (MHV-68) to explore the biological role of the 40 bp internal repeat of MHV-68. We constructed several mutant viruses partially or completely lacking this repeat. Both in vitro and in vivo, the loss of the repeat did not substantially affect lytic replication of the mutant viruses. However, the extent of splenomegaly, which is associated with the establishment of latency, and the number of ex vivo reactivating and genome positive splenocytes were reduced. Since the 40 bp repeat is part of the hypothetical open reading frame (ORF) M6, it might function as part of M6 or as an independent structure. To differentiate between these two possibilities, we constructed an N-terminal M6STOP mutant, leaving the repeat structure intact but rendering ORF M6 unfunctional. Disruption of ORF M6 did neither affect lytic nor latent infection. In contrast to the situation in lytically infected NIH3T3 cells, the expression of the latency-associated genes K3 and ORF72 was reduced in the latently infected murine B cell line Ag8 in the absence of the 40 bp repeat. CONCLUSIONS/SIGNIFICANCE: These data suggest that the 40 bp repeat contributes to latency amplification and might be involved in the regulation of viral gene expression

    A Single CD8+ T Cell Epitope Sets the Long-Term Latent Load of a Murid Herpesvirus

    Get PDF
    The pathogenesis of persistent viral infections depends critically on long-term viral loads. Yet what determines these loads is largely unknown. Here, we show that a single CD8+ T cell epitope sets the long-term latent load of a lymphotropic gamma-herpesvirus, Murid herpesvirus-4 (MuHV-4). The MuHV-4 M2 latency gene contains an H2-Kd -restricted T cell epitope, and wild-type but not M2− MuHV-4 was limited to very low level persistence in H2d mice. Mutating the epitope anchor residues increased viral loads and re-introducing the epitope reduced them again. Like the Kaposi's sarcoma–associated herpesvirus K1, M2 shows a high frequency of non-synonymous mutations, suggesting that it has been selected for epitope loss. In vivo competition experiments demonstrated directly that epitope presentation has a major impact on viral fitness. Thus, host MHC class I and viral epitope expression interact to set the long-term virus load

    A Gamma-Herpesvirus Glycoprotein Complex Manipulates Actin to Promote Viral Spread

    Get PDF
    Viruses lack self-propulsion. To move in multi-cellular hosts they must therefore manipulate infected cells. Herpesviruses provide an archetype for many aspects of host manipulation, but only for alpha-herpesviruses in is there much information about they move. Other herpesviruses are not necessarily the same. Here we show that Murine gamma-herpesvirus-68 (MHV-68) induces the outgrowth of long, branched plasma membrane fronds to create an intercellular network for virion traffic. The fronds were actin-based and RhoA-dependent. Time-lapse imaging showed that the infected cell surface became highly motile and that virions moved on the fronds. This plasma membrane remodelling was driven by the cytoplasmic tail of gp48, a MHV-68 glycoprotein previously implicated in intercellular viral spread. The MHV-68 ORF58 was also required, but its role was simply transporting gp48 to the plasma membrane, since a gp48 mutant exported without ORF58 did not require ORF58 to form membrane fronds either. Together, gp48/ORF58 were sufficient to induce fronds in transfected cells, as were the homologous BDLF2/BMRF2 of Epstein-Barr virus. Gp48/ORF58 therefore represents a conserved module by which gamma-herpesviruses rearrange cellular actin to increase intercellular contacts and thereby promote their spread

    IgG Fc Receptors Provide an Alternative Infection Route for Murine Gamma-Herpesvirus-68

    Get PDF
    BACKGROUND: Herpesviruses can be neutralized in vitro but remain infectious in immune hosts. One difference between these settings is the availability of immunoglobulin Fc receptors. The question therefore arises whether a herpesvirus exposed to apparently neutralizing antibody can still infect Fc receptor(+) cells. PRINCIPAL FINDINGS: Immune sera blocked murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts, but failed to block and even enhanced its infection of macrophages and dendritic cells. Viral glycoprotein-specific monoclonal antibodies also enhanced infection. MHV-68 appeared to be predominantly latent in macrophages regardless of whether Fc receptors were engaged, but the infection was not abortive and new virus production soon overwhelmed infected cultures. Lytically infected macrophages down-regulated MHC class I-restricted antigen presentation, endocytosis and their response to LPS. CONCLUSIONS: IgG Fc receptors limit the neutralization of gamma-herpesviruses such as MHV-68
    corecore