13 research outputs found

    Active feedback cooling of a SiN membrane resonator by electrostatic actuation

    No full text
    Feedback-based control techniques are useful tools in precision measurements as they allow us to actively shape the mechanical response of high quality factor oscillators used in force detection measurements. In this paper, we implement a feedback technique on a high-stress low-loss SiN membrane resonator, exploiting the charges trapped on the dielectric membrane. A properly delayed feedback force (dissipative feedback) enables the narrowing of the thermomechanical displacement variance in a similar manner to the cooling of the normal mechanical mode down to an effective temperature Teff. In the experiment reported here, we started from room temperature and gradually increasing the feedback gain, we were able to cool down the first normal mode of the resonator to a minimum temperature of about 124mK. This limit is imposed by our experimental setup and, in particular, by the injection of the read-out noise into the feedback. We discuss the implementation details and possible improvements to the technique.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and MaterialsEKL Equipmen

    MEMS-based multi-modal vibration energy harvesters for ultra-low power autonomous remote and distributed sensing

    No full text
    In this contribution, we discuss the implementation of a novel microelectromechanical-systems (MEMS)-based energy harvester (EH) concept within the technology platform available at the ISAS Institute (TU Vienna, Austria). The device, already presented by the authors, exploits the piezoelectric effect to convert environmental vibrations energy into electricity, and presents multiple resonant modes in the frequency range of interest (i.e. below 10 kHz). The experimental characterisation of a sputter deposited aluminium nitride piezoelectric thin-film layer is reported, leading to the extraction of material properties parameters. Such values are then incorporated in the finite element method model of the EH, implemented in Ansys Workbench™, in order to get reasonable estimates of the converted power levels achievable by the proposed device solution. Multiphysics simulations indicate that extracted power values in the range of several µW can be addressed by the EH-MEMS concept when subjected to mechanical vibrations up to 10 kHz, operating in closed-loop conditions (i.e. piezoelectric generator connected to a 100 kΩ resistive load). This represents an encouraging result, opening up the floor to exploitations of the proposed EH-MEMS device in the field of wireless sensor networks and zero-power sensing nodes.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and MaterialsEKL Processin

    Calibrated quantum thermometry in cavity optomechanics

    No full text
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in non-classical states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sideband asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and MaterialsEKL Processin

    Squeezing a Thermal Mechanical Oscillator by Stabilized Parametric Effect on the Optical Spring

    Get PDF
    We report the confinement of an optomechanical micro-oscillator in a squeezed thermal state, obtained by parametric modulation of the optical spring. We propose and implement an experimental scheme based on parametric feedback control of the oscillator, which stabilizes the amplified quadrature while leaving the orthogonal one unaffected. This technique allows us to surpass the ?3??dB limit in the noise reduction, associated with parametric resonance, with a best experimental result of ?7.4??dB . While the present experiment is in the classical regime, in a moderately cooled system our technique may allow squeezing of a macroscopic mechanical oscillator below the zero-point motion.MicroelectronicsElectrical Engineering, Mathematics and Computer Scienc

    Quantum thermometry in optomechanics

    No full text
    We describe a method to control the cavity detuning in optomechanics experiments. This helps accurate measurements of the asymmetry in the motional sidebands, that testify the quantum behavior of the oscillator and quantifies its occupation number.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Else Kooi LaboratoryElectronic Components, Technology and MaterialsPhotovoltaic Materials and Device

    Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment

    No full text
    We experimentally investigate a mechanical squeezed state realized in a parametrically modulated membrane resonator embedded in an optical cavity. We demonstrate that a quantum characteristic of the squeezed dynamics can be revealed and quantified even in a moderately warm oscillator, through the analysis of motional sidebands. We provide a theoretical framework for quantitatively interpreting the observations and present an extended comparison with the experiment. A notable result is that the spectral shape of each motional sideband provides a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations, in particular in the regime where residual fluctuations in the squeezed quadrature are reduced below the zero-point level. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Quantum nondemolition measurement of optical field fluctuations by optomechanical interaction

    Get PDF
    According to quantum mechanics, if we keep observing a continuous variable we generally disturb its evolution. For a class of observables, however, it is possible to implement a so-called quantum nondemolition measurement: by confining the perturbation to the conjugate variable, the observable is estimated with arbitrary accuracy, or prepared in a well-known state. For instance, when the light bounces on a movable mirror, its intensity is not perturbed (the effect is just seen on the phase of the radiation), but the radiation pressure allows one to trace back its fluctuations by observing the mirror motion. In this work, we implement a cavity optomechanical experiment based on an oscillating micromirror, and we measure correlations between the output light intensity fluctuations and the mirror motion. We demonstrate that the uncertainty of the former is reduced below the shot-noise level determined by the corpuscular nature of light.Else Kooi LaboratoryEKL ProcessingElectronic Components, Technology and Material

    Quantum nondemolition measurement of light intensity fluctuations in an optomechanical experiment

    No full text
    Summary form only given. According to quantum mechanics, there exists a class of observables for which is possible to confine the perturbation produced by a continuous measurement to the conjugate variable. Therefore, it is possible to devise experimental schemes that allow estimating the observed variable with arbitrary accuracy, or preparing it in a well-known state. Such schemes are referred to as quantum non-demolition measurements (QND). Among these observables there is the amplitude of the light field. Indeed, it is possible to exploit a movable mirror to implement a QND scheme [1]. Intensity fluctuations of an optical field impinging on it are not affected by the interaction. However, the movable mirror is excited by the associated radiation pressure. This, in turn, affects the phase of the field.We have performed an optomechanical experiment, based on a Fabry-Pérot cavity in which the end mirror is a high Q micro-mechanical device [2], where we have simultaneously measured intensity fluctuations of the field reflected by the cavity and the mirror motion imprinted in the phase fluctuations. By exploiting the correlations between these variables, we demonstrate a reduced uncertainty on intensity fluctuations actually achieving a sub-shot noise level.EKL ProcessingElectronic Components, Technology and Material

    Quantum Signature of a Squeezed Mechanical Oscillator

    No full text
    Recent optomechanical experiments have observed nonclassical properties in macroscopic mechanical oscillators. A key indicator of such properties is the asymmetry in the strength of the motional sidebands produced in the probe electromagnetic field, which is originated by the noncommutativity between the oscillator ladder operators. Here we extend the analysis to a squeezed state of an oscillator embedded in an optical cavity, produced by the parametric effect originated by a suitable combination of optical fields. The motional sidebands assume a peculiar shape, related to the modified system dynamics, with asymmetric features revealing and quantifying the quantum component of the squeezed oscillator motion.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Low-Loss Optomechanical Oscillator for Quantum-Optics Experiments

    No full text
    We present an oscillating micromirror with mechanical quality factors Q up to 1.2×106 at cryogenic temperature and optical losses lower than 20 ppm. The device is specifically designed to ease the detection of ponderomotive squeezing (or, more generally, to produce a cavity quantum optomechanical system) at frequencies of about 100 kHz. The design allows one to keep under control both the structural loss in the optical coating and the mechanical energy leakage through the support. The comparison between devices with different shapes shows that the residual mechanical loss at 4.2 K is equally contributed by the intrinsic loss of the silicon substrate and of the coating, while at higher temperatures the dominant loss mechanism is thermoelasticity in the substrate. As the modal response of the device is tailored for its use in optical cavities, these features make the device very promising for quantum-optics experiments.Else Kooi LaboratoryElectrical Engineering, Mathematics and Computer Scienc
    corecore