6 research outputs found

    Direct effects of type I interferons on cells of the immune system

    No full text
    Type I interferons (IFN-I) are well-known inducers of tumor cell apoptosis and antiangiogenesis via signaling through a common receptor interferon alpha receptor (IFNAR). IFNAR induces the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) pathway in most cells, along with other biochemical pathways that may differentially operate, depending on the responding cell subset, and jointly control a large collection of genes. IFNs-I were found to systemically activate natural killer (NK) cell activity. Recently, mouse experiments have shown that IFNs-I directly activate other cells of the immune system, such as antigen-presenting dendritic cells (DC) and CD4 and CD8 T cells. Signaling through the IFNAR in T cells is critical for the acquisition of effector functions. Cross-talk between IFNAR and the pathways turned on by other surface lymphocyte receptors has been described. Importantly, IFNs-I also increase antigen presentation of the tumor cells to be recognized by T lymphocytes. These IFN-driven immunostimulatory pathways offer opportunities to devise combinatorial immunotherapy strategies

    Intratumoral injection of interferon-α and systemic delivery of agonist anti-CD137 monoclonal antibodies synergize for immunotherapy

    No full text
    CD137 artificial costimulation results in complete tumor rejection in several mouse models. Type I interferons (IFN) exert antitumor effects through an array of molecular functions on malignant cells, tumor stroma and immune system cells. The fact that agonist anti-CD137 mAb induce tumor regressions in mice deficient in the unique receptor for Type I IFNs (IFNAR(-/-) ) indicated potential for treatment combinations. Indeed, combination of intratumor injections of mouse IFN-α and intraperitoneal injections of anti-CD137 mAb synergized as seen on subcutaneous lesions derived from the MC38 colon carcinoma, which is resistant to each treatment if given separately. Therapeutic activity was achieved both against lesions directly injected with IFN-α and against distant concomitant tumors. Experiments in bone marrow chimeras prepared with IFNAR(-/-) and WT mice concluded that expression of the receptor for Type I interferons is mainly required on cells of the hematopoietic compartment. Synergistic effects correlated with a remarkable cellular hyperplasia of the tumor draining lymph nodes (TDLNs). Enlarged TDLNs contained more plasmacytoid and conventional dendritic cells (DC) that more readily cross-presented. Importantly, numbers of both DC subtypes inversely correlated with the tumor size. Numbers of CD8 T cells specific for a dominant tumor antigen were increased at TDLNs by each separate treatment but only with slight augments due to the combination. Combined antitumor effects of the therapeutic strategy were also seen on subcutaneous TC-1 tumors established for 24 days before treatment onset. The described strategy is realistic because (i) agents of each kind are clinically available and (ii) equivalent procedures in humans are feasible

    Initial T cell frequency dictates memory CD8+ T cell lineage commitment.

    No full text
    Memory T cells can be divided into central memory T cell (T(CM) cell) and effector memory T cell (T(EM) cell) subsets based on homing characteristics and effector functions. Whether T(EM) and T(CM) cells represent interconnected or distinct lineages is unclear, although the present paradigm suggests that T(EM) and T(CM) cells follow a linear differentiation pathway from naive T cells to effector T cells to T(EM) cells to T(CM) cells. We show here that naive T cell precursor frequency profoundly influenced the pathway along which CD8+ memory T cells developed. At low precursor frequency, those T(EM) cells generated represented a stable cell lineage that failed to further differentiate into T(CM) cells. These findings do not adhere to the present dogma regarding memory T cell generation and provide a means for identifying factors controlling memory T cell lineage commitment

    Conhecimento sobre ação coletiva e movimentos sociais: pontos para uma anålise dos protestos sociais em África

    No full text
    corecore