19 research outputs found

    A General Approach for Predicting the Behavior of the Supreme Court of the United States

    Full text link
    Building on developments in machine learning and prior work in the science of judicial prediction, we construct a model designed to predict the behavior of the Supreme Court of the United States in a generalized, out-of-sample context. To do so, we develop a time evolving random forest classifier which leverages some unique feature engineering to predict more than 240,000 justice votes and 28,000 cases outcomes over nearly two centuries (1816-2015). Using only data available prior to decision, our model outperforms null (baseline) models at both the justice and case level under both parametric and non-parametric tests. Over nearly two centuries, we achieve 70.2% accuracy at the case outcome level and 71.9% at the justice vote level. More recently, over the past century, we outperform an in-sample optimized null model by nearly 5%. Our performance is consistent with, and improves on the general level of prediction demonstrated by prior work; however, our model is distinctive because it can be applied out-of-sample to the entire past and future of the Court, not a single term. Our results represent an important advance for the science of quantitative legal prediction and portend a range of other potential applications.Comment: version 2.02; 18 pages, 5 figures. This paper is related to but distinct from arXiv:1407.6333, and the results herein supersede arXiv:1407.6333. Source code available at https://github.com/mjbommar/scotus-predict-v

    Distance Measures for Dynamic Citation Networks

    Full text link
    Acyclic digraphs arise in many natural and artificial processes. Among the broader set, dynamic citation networks represent a substantively important form of acyclic digraphs. For example, the study of such networks includes the spread of ideas through academic citations, the spread of innovation through patent citations, and the development of precedent in common law systems. The specific dynamics that produce such acyclic digraphs not only differentiate them from other classes of graphs, but also provide guidance for the development of meaningful distance measures. In this article, we develop and apply our sink distance measure together with the single-linkage hierarchical clustering algorithm to both a two-dimensional directed preferential attachment model as well as empirical data drawn from the first quarter century of decisions of the United States Supreme Court. Despite applying the simplest combination of distance measures and clustering algorithms, analysis reveals that more accurate and more interpretable clusterings are produced by this scheme.Comment: 7 pages, 5 figures. Revision: Added application to the network of the first quarter-century of Supreme Court citations. Revision 2: Significantly expanded, includes application on random model as wel
    corecore