159 research outputs found

    BILATERAL JUMP PERFORMANCE IS NOT RELATED TO KINETIC ASYMMETRY IN ELITE AMERICAN FOOTBALL PLAYERS

    Get PDF
    Monitoring kinetic asymmetry may provide coaches with a modifiable variable to improve performance. The purpose of this study was to determine the prevalence and relationship of kinetic asymmetry during a countermovement jump (CMJ) and jumping performance. 26 elite American football players performed drop jumps onto an electronic timing mat and CMJ onto a force plate. Kinetic asymmetry was assessed calculating a symmetry index (SI) from inter-limb peak vertical ground reaction forces at propulsion during the CMJ. Pearson correlation coefficients quantified relationships between SI, reactive strength and jump height from the drop jumps, and jump height from the CMJ, p10%. SI was not significantly associated with any variables. p\u3e.05. Players may compensate for asymmetry in a manner that preserves performance

    Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques.

    Get PDF
    Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques

    Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques

    Get PDF
    Imaging markers for monitoring disease progression in progressive multiple sclerosis (PMS) are scarce, thereby limiting the possibility to monitor disease evolution and to test effective treatments in clinical trials. Advanced imaging techniques that have the advantage of metrics with increased sensitivity to short-term tissue changes and increased specificity to the structural abnormalities characteristic of PMS have recently been applied in clinical trials of PMS. In this review, we (1) provide an overview of the pathological features of PMS, (2) summarize the findings of research and clinical trials conducted in PMS which have applied conventional and advanced magnetic resonance imaging techniques and (3) discuss recent advancements and future perspectives in monitoring PMS with imaging techniques

    The Two-Way Route between Delirium Disorder and Dementia: Insights from COVID-19.

    Get PDF
    Delirium disorder is a frequent neurological complication of SARS-CoV-2 infection and associated with increased disease severity and mortality. Cognitive impairment is a major risk factor for developing delirium disorder during COVID-19, which, in turn, increases the risk of subsequent neurological complications and cognitive decline. The bidirectional connection between delirium disorder and dementia likely resides at multiple levels, and its pathophysiological mechanisms during COVID-19 include endothelial damage, blood-brain barrier dysfunction, and local inflammation, with activation of microglia and astrocytes. Here, we describe the putative pathogenic pathways underlying delirium disorder during COVID-19 and highlight how they cross with the ones leading to neurodegenerative dementia. The analysis of the two-sided link can offer useful insights for confronting with long-term neurological consequences of COVID-19 and framing future prevention and early treatment strategies

    Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging

    Get PDF
    The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique's advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance

    Position Sense Deficits at the Lower Limbs in Early Multiple Sclerosis: Clinical and Neural Correlates

    Get PDF
    Background/Objective. Position sense, defined as the ability to identify joint and limb position in space, is crucial for balance and gait but has received limited attention in patients with multiple sclerosis (MS). We investigated lower limb position sense deficits, their neural correlates, and their effects on standing balance in patients with early MS. Methods. A total of 24 patients with early relapsing-remitting MS and 24 healthy controls performed ipsilateral and contralateral matching tasks with the right foot during functional magnetic resonance imaging. Corpus callosum (CC) integrity was estimated with diffusion tensor imaging. Patients also underwent an assessment of balance during quiet standing. We investigated differences between the 2 groups and the relations among proprioceptive errors, balance performance, and functional/structural correlates. Results. During the contralateral matching task, patients demonstrated a higher matching error than controls, which correlated with the microstructural damage of the CC and with balance ability. In contrast, during the ipsilateral task, the 2 groups showed a similar matching performance, but patients displayed a functional reorganization involving the parietal areas. Neural activity in the frontoparietal regions correlated with the performance during both proprioceptive matching tasks and quiet standing. Conclusion. Patients with early MS had subtle, clinically undetectable, position sense deficits at the lower limbs that, nevertheless, affected standing balance. Functional changes allowed correct proprioception processing during the ipsilateral matching task but not during the more demanding bilateral task, possibly because of damage to the CC. These findings provide new insights into the mechanisms underlying disability in MS and could influence the design of neurorehabilitation protocols

    Relationship between retinal inner nuclear layer, age, and disease activity in progressive MS

    Get PDF
    Objective: To investigate whether inner nuclear layer (INL) thickness as assessed with optical coherence tomography differs between patients with progressive MS (P-MS) according to age and disease activity. Methods: In this retrospective longitudinal analysis, differences in terms of peripapillary retinal nerve fiber layer (pRNFL), ganglion cell layer + inner plexiform layer (GCIPL), INL and T1/T2 lesion volumes (T1LV/T2LV) were assessed between 84 patients with P-MS and 36 sex- and age-matched healthy controls (HCs) and between patients stratified according to age (cut-off: 51 years) and evidence of clinical/MRI activity in the previous 12 months RESULTS: pRNFL and GCIPL thickness were significantly lower in patients with P-MS than in HCs (p = 0.003 and p < 0.0001, respectively). INL was significantly thicker in patients aged < 51 years compared to the older ones and HCs (38.2 vs 36.5 and 36.7 μm; p = 0.038 and p = 0.04, respectively) and in those who presented MRI activity (new T2/gadolinium-enhancing lesions) in the previous 12 months compared to the ones who did not and HCs (39.5 vs 36.4 and 36.7 μm; p = 0.003 and p = 0.008, respectively). Recent MRI activity was significantly predicted by greater INL thickness (Nagelkerke R2 0.36, p = 0.001). Conclusions: INL thickness was higher in younger patients with P-MS with recent MRI activity, a criterion used in previous studies to identify a specific subset of patients with P-MS who best responded to disease-modifying treatment. If this finding is confirmed, we suggest that INL thickness might be a useful tool in stratification of patients with P-MS for current and experimental treatment choice

    The relationship between cortical lesions and periventricular NAWM abnormalities suggests a shared mechanism of injury in primary-progressive MS.

    Get PDF
    In subjects with multiple sclerosis (MS), pathology is more frequent near the inner and outer surfaces of the brain. Here, we sought to explore if in subjects with primary progressive MS (PPMS) cortical lesion load is selectively associated with the severity of periventricular normal appearing white matter (NAWM) damage, as assessed with diffusion weighted imaging. To this aim, twenty-four subjects with PPMS and twenty healthy controls were included in the study. Using diffusion data, skeletonized mean diffusivity (MD) NAWM maps were computed excluding WM lesions and a 2 mm-thick peri-lesional rim. The supra-tentorial voxels between 2 and 6 mm of distance from the lateral ventricles were included in the periventricular NAWM mask while the voxels between 6 and 10 mm from the lateral ventricles were included in the deep NAWM mask; mean MD values were then computed separately for these two masks. Lastly, cortical lesions were assessed on phase-sensitive inversion recovery (PSIR) images and cortical thickness was quantified on volumetric T1 images. Our main result was the observation in the PPMS group of a significant correlation between periventricular NAWM MD values and cortical lesion load, with a greater cortical lesion burden being associated with more abnormal periventricular NAWM MD. Conversely, there was no correlation between cortical lesion load and deep NAWM MD values or periventricular WM lesions. Our data thus suggest that a common - and relatively selective - factor plays a role in the development of both cortical lesion and periventricular NAWM abnormalities in PPMS
    corecore