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Abstract 
The cerebellum plays a key role in movement control and 
in cognition and cerebellar involvement is described in 
several neurodegenerative diseases. While conventional 
magnetic resonance imaging (MRI) is widely used for 
brain and cerebellar morphologic evaluation, advanced 
MRI techniques allow the investigation of cerebellar 
microstructural and functional characteristics. Volumetry, 
voxel-based morphometry, diffusion MRI based fiber 
tractography, resting state and task related functional 
MRI, perfusion, and proton MR spectroscopy are among 
the most common techniques applied to the study of 
cerebellum. In the present review, after providing a 
brief description of each technique’s advantages and 
limitations, we focus on their application to the study of 
cerebellar injury in major neurodegenerative diseases, 
such as multiple sclerosis, Parkinson’s and Alzheimer’
s disease and hereditary ataxia. A brief introduction to 
the pathological substrate of cerebellar involvement is 
provided for each disease, followed by the review of MRI 
studies exploring structural and functional cerebellar 
abnormalities and by a discussion of the clinical relevance 
of MRI measures of cerebellar damage in terms of both 
clinical status and cognitive performance. 
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Core tip: The cerebellum is involved in movement control 
and cognition. Conventional and advanced magnetic 
resonance imaging (MRI) techniques are widely used for 
the morphologic evaluation and the microstructural and 
functional investigation of the cerebellum. In this review 
we show the state of the art of advanced MRI techniques 
in the investigation of cerebellum alterations, especially 
in patients affected by neurodegenerative diseases. In 
particular, we evaluated advantages, limitations and future 
perspective of these techniques in multiple sclerosis, 
Parkinson’s disease and Parkinsonisms, Alzheimer’s disease 
and hereditary ataxia, highlighting how the investigation of 
cerebellum may play a key role in the assessment of motor 
performance and clinical status of these diseases. 

Mormina E, Petracca M, Bommarito G, Piaggio N, Cocozza S, 
Inglese M. Cerebellum and neurodegenerative diseases: Beyond 
conventional magnetic resonance imaging. World J Radiol 
2017; 9(10): 371388  Available from: URL: http://www.wjgnet.
com/19498470/full/v9/i10/371.htm  DOI: http://dx.doi.org/10.4329/
wjr.v9.i10.371

INTRODUCTION
The cerebellum plays a key role in normal brain fun
ction and its structural and functional involvement in 
several neurological diseases is associated with the 
impairment of both motor and nonmotor functions 
such as cognition, mood and behavior. Imaging studies 
have been challenged in the past by the complex cere
bellar anatomical structure and by its location in the 
posterior fossa. The advent of highfield magnets and 
the development of new algorithms for image acquisition 
and analysis have, at least in part, improved the study of 
cerebellar structure and functions. This review provides 
a brief description of cerebellar macro and microscopic 
anatomy and functions and focuses on the imaging 
methods and segmentation tools for the analysis of the 
cerebellum with emphasis on each method’s advantages 
and limitations. Further, the clinical implications of the 
cerebellar involvement in neurological diseases such as 
multiple sclerosis, hereditary ataxias, Parkinson’s and 
Alzheimer’s disease are discussed.

Anatomy and function 
The cerebellum is a large folded structure consisting of 
two cerebellar hemispheres, united by a central part 
known as vermis located in the posterior cranial fossa, 
lying dorsal to the brainstem and inferior occipital lobes. 

It is separated from the cerebrum by a dura mater 
layer known as tentorium cerebelli and it is surrounded 
posterolaterally and inferomedially by venous stru
ctures, respectively transverse and sigmoid sinuses. The 
cerebellar cortex is tightly folded and composed by three 
layers: Molecular layer, Purkinje cell layer and granular 
layer. Each ridge or gyrus of gray matter is called folium. 
Underneath these layer of gray matter there is a central 
mass of white matter, also called corpus midollare or 
arbor vitae (tree of life), in which are embedded the three 
deep gray matter cerebellar nuclei: Fastigial nucleus, 
interposed nucleus (composed by the emboliform 
and globose nuclei) and dentate nucleus. Three white 
matter peduncles (superior, middle and inferior) connect 
the cerebellum to the brainstem, respectively to the 
midbrain, pons and medulla oblungata. In addition to 
the above reported macro and microscopic description, 
cerebellar structure can be further characterized from a 
morphologic, phylogenetic and functional perspective. 
The morphologic classification describes, without any 
functional basis, a division into three lobes: Anterior, 
posterior and flocculonodular lobe, while the phylogenetic 
classification divides the cerebellum into archicerebellum 
(the most ancient portion), paleocerebellum (developed 
after archicerebellum) and neocerebellum (the new
est portion). The functional classification divides the 
cerebellum in three regions: Vestibulocerebellum, sp
inocerebellum and cerebrocerebellum based on the 
location of the afferent and efferent neurons[1,2]. The 
vestibulocerebellum corresponds to the flocculonodular 
lobe, with afferents neurons arising from vestibular 
nuclei (and some portion of visual cortex) and efferents 
neurons going to vestibular nuclei. It modulates gait 
balance and eye movements. The spinocerebellum is 
formed by the superior and inferior portion of the vermis 
(with the exception of the nodule) and by a bilateral 
paravermian portion, located on both sides of the vermis. 
The vermian part of the spinocerebellum has its afferent 
neurons arising from the spinal cord, vestibular, visual 
and acoustic nuclei and has its efferents neurons going 
through the fastigial nucleus. It modulates head and neck 
muscle movement as well as trunk and limb proximal 
portions. The paravermian part of the spinocerebellum 
has its afferents neurons arising from the spinal cord and 
trigeminal sensory nuclei, and its efferents neurons going 
through the interposed nucleus. It completes movement 
modulation performed by the vermian part, acting on 
limb distal portions. The cerebrocerebellum is composed 
by the two cerebellar hemispheres and receives afferent 
neurons from most of the neocortex (frontal, parietal, 
temporal, and occipital lobes) through the pons nuclei, 
sending its efferent neurons to thalamus and cerebral 
cortex through the dentate nucleus. Functional specificity 
is granted by the presence of multiple closeloop circuits 
between cerebral and cerebellar cortex, in which the 
same brain area that is the major target of output 
from the cerebrocerebellar circuit it is also its major 
source of input[3,4]. In each loop, a specific cortical area 
projects through the pontine nuclei to a distinct region 
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of the cerebellar cortex. A specific portion of the dentate 
nucleus projects then to a specific cortical area through 
a distinct thalamic region, thus closing the cerebro
cerebellar loop[5,6]. According to studies conducted 
on primates, the dentate nucleus is topographically 
organized in a ventral portion, projecting to the prefrontal 
and posterior parietal cortex, and a dorsal portion, 
projecting to the motor cortex[7]. Both motor and non
motor domains of the dentate also project to the stria
tum (input stage of basal ganglia processing), raising 
the hypothesis that cerebellum could also modulate 
basal ganglia facilitation of voluntary movements[8]. The 
cerebrocerebellum is the largest part of the cerebellum 
and accounts for motor planning and motor learning. 
It is responsible for the transition from controlled to 
automatic movement: Once motor memories storage 
has been achieved in the cerebellar cortex, the execution 
of movements can be triggered by sparse highlevel 
command from cerebral cortex[9]. The ability of the 
cerebellum to adjust performance according to context, 
automatically integrating interoception with perception 
and internal models, does not apply only to movements 
controls but also to cognitive function, as proved by the 
occurrence of the cerebellar cognitiveaffective syndrome 
following acute cerebellar lesions of the posterior lobe[10]. 
In particular, lesions of the posterolateral hemispheres 
cause cognitive disturbances, while vermis lesions induce 
behavioral and affective alterations. Cerebrocerebellum 
is considered an essential modulator of cognitive abi
lities, such as language processing and visuospatial 
perception (respectively lateralized in the right and left 
cerebellar hemisphere), as well as high order functions 
as emotions, behaviors and personality. For example, 
thanks to its connection to the prefrontal cortex, the 
cerebellum is involved in the execution of abstract rules 
that govern response selection, regardless of whether 
they specifically relate to the selection of actions[11,12].

MRI of the posterior cranial fossa 
The posterior cranial fossa (PCF) is located between the 
tentorium cerebelli and foramen magnum and houses 
the cerebellum and the brainstem. For its peculiar 
conformation, small dimensions and contained structures, 
an accurate study by means of computed tomography (CT) 
and MRI had always represented a great challenge[1315]. 
However, several progresses have been made in this field 
to avoid the artifacts related to the Xray beam hardening 
and the partial volume effects (which is nonlinear) caused 
by the thickness and the irregularity of the skullbase 
bones. Specifically, the introduction of thin-section spiral 
multidetector CT, which allows the acquisition of isotropic 
voxel scans and the use of MRI scanners which allow the 
acquisition of multiplanar and multiparametric images 
have contributed to minimize PCF artifacts[1623]. Most of 
PCF artifacts are related to blood flow pulsation, inflow/
outflow of cerebrospinal fluid (CSF) and to the brain
boneair interfaces[2430]. 

Artifacts related to vessels blood pulsation generate 
a signal that is displaced from its correct anatomical 

position causing a wrong/inappropriate image, also called 
“ghost” artifacts[31]. Transverse sinuses blood-flow related 
artifact, which often generate a false image projecting 
onto cerebellar parenchyma, may lead to an inaccurate 
or inappropriate interpretation of MR images. Artifacts 
related to the inflow and outflow of CSF inside PCF from 
the superior or inferior regions can be minimized by 
the use of fluid attenuated inversion recovery (FLAIR) 
images where the CSF signal is nulled out by setting a 
proper inversion pulse. Unfortunately, these artifacts can 
still be present if the inversion pulse is spatially selective, 
allowing a partial suppression[30,32]. As shown by Baksi et 
al[30] and Lavdas et al[33] this type of artifact may mimic 
or hide a brain parenchymal lesion due to the presence, 
along with the phase encoding direction, of a redundant 
CSF signal.

The brainboneair interfaces artifact represents one 
of the magnetic susceptibility artifacts that are often 
present on gradientecho sequences[28], especially in 
regions like the skull base, petrous temporal bone, 
paranasal sinuses and orbits[34,35].

It should be noted that some MRI sequences are more 
prone to specific artifacts than others: i.e., gradientecho 
for susceptibility artifacts (since this sequence does not 
use a refocusing 180° pulse and signal dephases fast due 
to field inhomogeneity), inversion recovery (e.g., short 
tau inversion recovery and FLAIR) for pulsatile artifacts, 
or 2D time-of-flight for slow-flow artefactual gaps in non-
dominant transverse sinus[13,30,33,36]. Nonetheless, some 
of these artifacts are routinely exploited for diagnostic 
purposes: Susceptibility weighted images (and in general 
T2*w gradientecho images) thanks to its capability of 
being susceptible to paramagnetic molecules, is able to 
recognize small amounts of blood degradation products 
better than other sequences and to distinguish between 
parenchymal calcifications and blood products[37]. 

Although the combined use of MRI and CT is recom
mended for the diagnosis of PCF pathologies, MR is 
preferred to CT in order to evaluate soft tissue structures 
and to determinate their spatial relationship. While MRI 
provides higher accuracy in detecting bone marrow 
changes, brain parenchyma, meningeal infiltration, peri-
neural and perivascular spread caused by tumors[14,38,39], 
CT is more sensitive for the evaluation of bone structures, 
PFC tumoral and nontumoral conditions[14,40].

High and ultra-high field MRI 
The possibility to study the brain at high and ultrahigh 
field strength has become quite common after the United 
States FDA approval of MR magnets up to 4 Tesla (T) for 
clinical use. Currently, the term ultra-high field is used for 
MR scanners with a magnetic field strength higher than 
3T. The application of high and ultrahigh static magnetic 
field strength can improve the visualization of brain 
anatomy and the study of changes in brain structure 
and function in several neuropsychiatric diseases. For 
example, the higher signaltonoise ratio (SNR) of 3T 
scanners allows not only to perform faster imaging 
compared to 1.5T scanners (doubling the strength of the 
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magnetic field would theoretically lead to a reduction of 
acquisition time of a factor of four), but also to acquire 
images at higher spatial resolution, that turns be very 
useful in the evaluation of small structures such as 
the cerebellum and the brainstem. It has been shown 
that higher spatial resolution is helpful in studying the 
cerebellar cortex, whose thickness is lower than cerebral 
thickness (< 0.5 mm vs the 34 mm, respectively)[41,42]. 

In the research field, 7T MR scanners have proven 
to be of great use for the identification and the study of 
each cerebellar folia (which are approximatively 260)[43] 
and for the study of cerebellar cortical layers. Specifically, 
the granular and molecular cerebellar layers, whose 
thickness is approximatively 240 μm, are well recognized 
and morphologically studied at 7T which has the unique 
advantage to allow an inplane voxel size of 120 μm 
not possible at low-field MR scanners[44]. It is important 
to bear in mind that higher magnetic fields bring the 
inherit heavy burden of several artifacts and limitations. 
For instance chemical shift imaging and susceptibility 
artifacts, are only some of the artifacts that will increase 
with high magnetic field. These phenomena, which may 
cause images misinterpretation, can also be exploited, 
leading for example to a better separation of metabolites 
in spectroscopy, a better performance in perfusion 
weighted imaging, or a better blood products detection. 
Further, when using high and ultra-high magnetic fields 
in humans, the specific absorption rate (SAR) should 
also be carefully evaluated, since it will be quadruplicate 
with the doubling of the field strength, limiting the 
use of some sequences and making some parameter 
modulation necessary in order not to exceed the SAR 
threshold limit given by International Electrotechnical 
Commission[45].

MRI techniques available for the study of cerebellum 
Conventional morphologic techniques 
The remarkable wide range of MR sequences available 
for the study of the PCF and the cerebellum comes with 
the difficulty of making the optimal selection based on 
the clinical or research question. In a standard clinical 
study the MRI protocol should include a turbo spinecho 
(TSE) T1weighted (T1w) sequence to assess shape 
and dimension of the cerebellum and of the PCF, TSE
T2w and FLAIRT2w sequences to detect potential white 
matter (WM) lesions. The choice of an isotropic voxel 
(≤ 1 mm) should always be preferred when available or 
when a highresolution multiplanar evaluation is needed. 
For example, it has been showed that, in comparison to 
TSET2/proton density sequences, isotropic 3DFLAIR is 
more accurate in detecting not only white matter lesions 
but also cortical and infratentorial lesions in patients with 
multiple sclerosis (MS)[46]. 3D FLAIR has advantages even 
when acquired at ultrahigh magnetic field, such as in 
the study of Kilsdonk et al[47] in which cortical gray matter 
(GM) lesions were better detected at 7T with 3D FLAIR 
than with GM-Specific 3D double inversion recovery (DIR) 
or with 2DT2w and 3DT1w. Finally, quantitative T1 and 
proton density (ρ) magnetic resonance imaging at 3T 

provide a good visualization of deep cerebellar nuclei, 
like dentate nuclei at 1.5T[48]. Similarly, susceptibility 
weighted imaging (SWI) allows a better detection of the 
dentate nuclei at 1.5T while higher magnetic field allows 
visualization of the dentate wall corrugation, which is the 
ironpoorer dorsal portion of it[49].

Volumetric techniques 
There is an everincreasing interest in the evaluation of 
cerebellar volume as a potential correlate of motor and 
cognitive performance and as a biomarker of progression 
and/or treatment outcome in neurodegenerative dis
orders[50].

Several computerized methods with specific advan
tages and limitations are available to perform cerebellar 
segmentation, lobule parcellation and thus to assess 
global cerebellar volume, regional or lobular volumes 
and GM and WM volume. Although manual volume 
segmentation is considered the “gold standard”, this 
option is extremely timeconsuming and its reliability may 
vary with the experience of the raters[51]. Several semi
automatic computerized methods have been developed 
and validated in order to minimize operatordependent 
limitation. We will focus on the methods that have been 
more extensively applied in clinical studies and will 
describe each method’s advantages and limitations.

SUIT (spatially unbiased atlas template of the cere
bellum and brainstem) is a Statistical Parametric ma
pping software (SPM) toolbox for MATLAB, based on a 
nonlinear coregistration of MRI images to a highresolution 
cerebellum template obtained from images of healthy 
controls[52]. This method allows the parcellation of the 
cerebellum in at least 28 lobules, thus measuring GM 
volume for each lobule and the global GM volume as 
the sum of all lobule volumes (Figure 1). SUIT has been 
applied to the study of several diseases such as multiple 
sclerosis (MS), autism spectrum disorder, attention 
deficit hyperactivity disorder, developmental dyslexia and 
primary craniocervical dystonia, and it has been shown 
that it has higher sensibility to volume changes than 
conventional wholebrain voxelbased morphometry 
(VBM) methods[50,53,54]. The main advantage of SUIT 
is that it provides an optimal overlap of the cerebellar 
lobules, preserving anatomical details, and thanks to 
its cropping step avoids results bias from supratentorial 
structures[50,53,54]. However, Bogovic et al[51] reported that 
SUIT accuracy may decrease in patients with severe 
cerebellar atrophy especially with regard to lobule specific 
segmentation. 

Cerebellar analysis toolkit (CATK) is based on a 
Bayesian framework of FMRIB’s Integrated Registration 
and Segmentation Tool[55]. Using handdelineated 
examples, active appearance models are created in or
der to perform cerebellar labeling and segmentation. 
CATK has shown a high reliability (Intraclass Correlation 
Coefficients, ICCs, of 0.96 for test-retest) a good manual 
segmentation agreement (ICC 0.87) and a better 
performance than other softwares, such as SUIT (v 2.7) 
and Freesurfer when compared to manual segmentation 
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(gold standard). However, the main limitation when 
compared to other softwares, is that CATK does not allow 
cerebellar hemisphere parcellation, although Price et 
al[55] in their paper stated a pending further improvement 
which would solve this issue and which would give higher 
image delineation (Figure 2).

ECCET is a semiautomatic toolkit based on a man
ually drawn region of interest ROI software. It is able 
to perform a fast semiautomatic segmentation after a 
manual outline drawing of few brainstem slices. It allows, 
when needed, manual editing in a 3D volume rendering 
mode (https://www.eccet.de/projects/neuro_en.html). 
This method has shown a good interobserver (ICC = 

0.98, 95%CI = 0.740.99) and testretest reliability 
(ICC = 0.99, 95%CI = 0.980.99) and the capability of 
avoiding some segmentation errors such as the inclusion 
of venous sinuses without the need of manual editing[56]. 

Unfortunately, to date, all the abovementioned soft
wares provide pipelines for one time point evaluation 
(crosssectional), but not for longitudinal analysis along 
time. This gap has been fulfilled by Freesurfer, which is 
a software that allows a reliable automatic whole brain 
segmentation, with up to 40 subcortical structures, 
labelling each voxel in a normalized space of the brain 
volume[57]. In addition to the crosssectional analysis, 
Freesurfer comprises a longitudinal stream where each 
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Figure 1  SUIT atlas (top) and template (bottom) showing the central cerebellar slice in the sagittal, coronal and axial planes. The atlas does not explicitly 
identify white matter apart from the dentate nuclei (from Ref. [55]).
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CATK, (B) SUIT and (C) Freesurfer. Both test and retest are plotted, illustrating the repeatability of each method (from Ref. [55]).
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time-point is co-registered to a subject-specific template 
by creating an average segmentation along time points, 
resulting in volume and GM thickness estimation[57]. 
Although Freesurfer presents this important advantage, 
it does not allow subregional segmentation in cerebellar 
lobules[55]. Moreover, manual editing of segmentation 
outputs is needed in order to improve volume evaluation 
reliability[58]. Although the editing can be performed 
manually, resulting in a very timeconsuming (up to 4h) 
and operatordependent approach, Wang et al[58], in a 
recent paper, proposed an accurate and efficient new 
machinelearning based method in order to overcome 
this issue. 

Diffusion weighted imaging and fiber tractography 
Diffusion magnetic resonance imaging (dMRI) is a MRI 
technique able to detect water molecules diffusion 
inside brain tissue. While diffusion of water molecules 
in GM is isotropic, diffusion in WM is anisotropic, i.e., 
it occurs in one main direction due to the presence of 
myelin barriers[59]. The evaluation of diffusion in a three 
dimensional space and along at least 6 directions, allows 
the creation of a diffusion tensor matrix, which provides 
the bases of tractographic reconstruction of brain neural 
circuitry[60]. Diffusion tensor imaging (DTI) and more 
advanced approaches (such as diffusion spectrum ima
ging or constrained spherical deconvolution) have been 
applied to determine cerebellar pathways and their 
connection with other supratentorial areas[6163] (Figure 
3). Although conventional DTI techniques are the most 
used technique to reconstruct cerebellar pathways by 
means of tractography, they are also well known for 
their limitations in the study of connectivity. DTI, indeed, 
is limited by the inability to discriminate different fiber 

populations with complex configurations at a voxel level 
(kissing fibers, bridging fibers, merging fibers, crossing 
fibers), thus leading to artefacts in fiber reconstructions 
and connectivity evaluations. Methods such as diffusion 
spectrum imaging and Qball imaging have been de
veloped over the last few years to overcome these 
limitations; however, the more complex hardware set 
up and the longer acquisition times have limited so far 
their application in the clinical setting[64]. Other promising 
techniques, such as diffusion kurtosis imaging (DKI), 
neurite orientation dispersion and density imaging (NODDI) 
and constrained spherical deconvolution can be performed 
within clinically feasible acquisition times[65] (Figure 3). 
Moreover, all these techniques can be analyzed with both 
deterministic and probabilistic fiber reconstruction models. 
While deterministic models reconstruct streamlines (virtual 
fiber tracts) taking into account the principle eigenvector 
of fractional anisotropy (FA) in each voxel, probabilistic 
models generate a connectivity map from a larger 
numbers of possible pathways, obtaining the probability 
of each voxel to be connected to another[66]. Regardless 
of the used approach, tractographic output can be used 
not only to reconstruct the spatial configuration of fiber 
tracts but also to measure diffusion parameters (i.e., FA 
or mean diffusivity) at voxel level. However, it has been 
proved that, not only parameters’ quantification but also 
the accuracy of tractographic results may be affected by 
the poor quality of the acquired data that can lead to the 
detection of false connections or to miss detection of a real 
connections between structures[59]. Therefore, a better 
data quality, optimized in terms of SNR, spatial resolution, 
number of diffusion directions, and number and values 
of b values, with the choice of a proper tractography 
method, may improve the method performance avoiding 

Figure 3  Reconstruction of cerebellar white matter tracts using constrained spherical deconvolution. Sagittal rotated view (A), superior axial view (B), and 
coronal view (C) show each fiber bundle manually colored: Superior cerebellar peduncle (blue), middle cerebellar peduncle (red), and hemispheric cerebellar tracts 
(yellow). The tridimensional sagittal rotated view shows color-coded cerebellar hemispheric streamlines according to the principal eigenvector’s direction (with 
permission of Springer, from Ref. [63]).
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inaccuracy in structural connectivity analysis[67]. Since 
cerebellar pathways tracking is particularly difficult due to 
the presence of sharp turning angles along their crossing, 
the assessment of cerebrocerebellar and intracerebellar 
connectivity could especially benefit from data quality 
improvement[61,63].

Resting state and task related fMRI
Functional MRI (fMRI) is based on the detection of the 
blood oxygen leveldependent (BOLD) changes that take 
place as a consequence of neuronal activity. An increase 
in neural activity leads to an increase in the arterial 
blood flow, in order to increase the activity itself. To this 
increase in the amount of oxygenated blood does not 
correspond a similar increase in oxygen extraction at 
the level of capillary bed, leading to a relative decrease 
of deoxyhemoglobin levels, that directly affects the MR 
signal.

fMRI experiments can be divided in task and rest
related. The first measure brain activity during a task 
performance, the second evaluate the interaction 
between different brain regions without the execution of 
any specific task, in a rest condition (resting-state fMRI 
 RSFMRI). 

With regard to taskbased fMRI studies, two main 
experimental paradigms are commonly used[68]. The 
first one is the socalled block design experiment, in 
which stimuli are presented to the subject in blocks of 
variable length alternated to blocks of rest, in which the 
stimulus is removed. MRI signals are then compared 
between the two conditions, in order to extrapolate the 
areas that show more activation during the execution of 
the task. The second is the eventrelated experimental 
design, in which the stimuli and the resting blocks are 
not alternated in a set sequence, but the administration, 
as well as the duration of the stimulus, are randomized. 

RSfMRI experiments can be analyzed using two 
major approaches. The first one is the seedbased 
approach, in which a region of interest is selected and 
the corresponding timeactivity curve is extracted. Then, 
voxels with similar activation are searched whole brain, 
and are assumed to be functionally correlated to the 
chosen seed[69]. The second method is the independent 
component analysis (ICA), a mathematical algorithm 
that allows to subdivide a multivariate and noisy signal in 
its subcomponents[70]. In this approach, no a priori seeds 
are chosen, but the operator is asked to identify the 
component of interest, and discard those obtained from 
noise or physiological signals. ICA analysis has allowed 
the identification of preferential connections between 
specific cerebral structures, that take the name of resting 
state networks[71]. Cerebellar lobules are not only hubs of 
several of these resting state networks (i.e., lobule IX in 
the default mode network, crus Ⅰ and Ⅱ in the executive 
control network or lobule Ⅵ in the salience network)[72], 
but also an entire and separate cerebellar network is 
recognized among the major resting state networks[71].

With this knowledge, it is easy to understand how 
future improvement is warranted to increase the of 

functional changes with respect of the cerebellar lobular 
anatomy. In particular, the possibility of increasing spatial 
resolution in fMRI experiments is a future challenge for 
investigating cerebellar functional connectivity due to the 
characteristic lobular anatomy. The increase in spatial 
resolution could further help in elucidating the exact 
functional lobular topography of the cerebellum, with 
regards to specific motor and cognitive functions[73].

Proton magnetic resonance spectroscopy 
Proton magnetic resonance spectroscopy (1HMRS) is an 
analytical method that allows the investigation of brain 
metabolites. Every metabolite at sufficient concentration 
level generates a specific peak in function of its re
sonance frequency[74]. Since metabolic abnormalities 
occur earlier than structural MRI alterations, 1HMRS 
can provide a valid tool for early diagnosis and for moni
toring of neurological diseases[75].

The most commonly studied brain metabolites are 
the Nacetylaspartate, a marker of neuroaxonal integrity, 
choline containing compounds, a marker of membrane 
turnovers, creatine/phosphocreatine, a marker of energy 
metabolism, and myoinositol, a marker of astroglial 
activation. From a quantification point of view, metabolites’ 
levels are expressed as absolute quantifications or as 
ratios where the denominator is the creatine level which 
is assumed to be stable in normal as well as in many 
pathologic states[76]. 

Although the infratentorial structures are often 
involved in neurodegenerative processes, strong B0 
inhomogeneities due to nearby skull bone, scalp lipids 
and tissue/air interfaces constitute a technical challenge 
for the 1HMRS acquisition. In addition, the small size of 
cerebellum increases the risk of partial volume effects[77], 
which can be accounted for by combining spectroscopic 
data with structural MRI segmentation[78]. Nevertheless, 
1HMRS of the infratentorial fossa is feasible[79] and 
could provide an early biomarker of neuronal damage in 
cerebellar diseases, with even increased specificity when 
used in combination with other techniques[80]. 

Perfusion MRI
Perfusion weighted imaging (PWI) allows the mea
surement of blood perfusion in brain tissue and it is 
categorized as: “minimally invasive” if requiring gadolinium 
injection (i.e., dynamic susceptibility contrast MRI or DSC
MRI and dynamic contrast enhanced MRI or DCEMRI) or 
“noninvasive” if no contrast agent is needed (i.e., arterial 
spin labelling or ASLMRI)[81]. Data from either technique 
above is subsequently processed and normalized to 
estimate the wellknown perfusion values: cerebral blood 
flow (CBF), cerebral blood volume (CBV), mean transit 
time (MTT), Ktrans and etc., which are all representable on 
parametric color maps.

Cerebellar tissue is subject to a great blood supply, 
and measurement of local variations of blood request/
availability is clinically relevant in the assessment of 
neurodegenerative diseases. Specifically, cerebral blo
od flow (CBF) alterations (i.e., general or local CBF 
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reduction) appear to precede structural abnormalities 
(for example: atrophy). Moreover, the cerebellum has 
been used as a reference region for intensity norm
alization of “relative” Cerebral Blood Volume (rCBV), 
based on the assumption that its CBV is not affected in 
neurocognitive disorders[82]. Although hard to eradicate, 
this assumption is nowadays obsolete, as alternative 
reference regions have recently been proposed and 
validated[83] .

With respect to the study of the cerebellum and the 
PCF, DSCMRI provides higher spatial resolution, high 
sensitivity in transit time and wholebrain coverage in 
shorter scan times, and it is preferred in all situations 
where a fast assessment is required. DCEMRI has 
the advantage of reducing artifacts especially for the 
measurement of CBV and Ktrans. ASLMRI is often 
preferred in the study of neurodegenerative diseases 
for its complete lack of invasiveness, vessel selective 
capability[84] and the best accuracy in absolute tissue 
perfusion quantification[81]. Particular care in placing 
the “labeling plane” is essential to avoid artifacts in the 
lower cerebellar sections[85]. Another limit of ASLMRI is 
WM assessment, which is particularly challenging due to 
the low blood transit and the consequent low SNR[86]. 

Unfortunately, despite the theoretical indications 
of each method, in the routine clinical settings, is the 
availability and practicality of the techniques that forces 
the choice, rather than its potential performance. This 
could explain the more frequent use of DSC and DCE 
imaging, faster, easy to perform and widely installed on 
most clinical scanners, compared to the use of ASL. 

MRI AND CLINICAL APPLICATIONS ON 
NEURODEGENERATIVE DISEASES
Multiple sclerosis
Multiple Sclerosis (MS) is an inflammatory/demyelinating 
disease of the central nervous system (CNS) chara
cterized by heterogeneous symptoms and signs that 
can present a relapsing remitting (RR) or a progressive 
course. In 1877 Jean Martin Charcot first described the 
disease as a triad of symptoms consisting of nystagmus, 
dysartria and ataxia[87], thus underlining the dominant 
role of cerebellar deficits. Not only is the cerebellum 
frequently involved by the disease pathological processes 
but the presence of MRI visible infratentorial lesions 
provides high specificity to the diagnostic criteria for 
MS[88]. Indeed, 31% of patients with a clinically isolated 
syndrome (CIS) present with at least one infratentorial 
lesion and about 20.5% with a cerebellar lesion. The 
detection of a cerebellar lesion at onset is associated 
with an increased risk of conversion to MS[89]. In patients 
with a clinically defined MS, cerebellar lesions have 
been described in up to 49% of cases and patients with 
a progressive form have an increased number of PCF 
lesions when compared to patients with a RR type[90]. 
Disease pathology involves not only the cerebellar WM 
but also the GM; in fact, cortical cerebellar lesions are 

observed in patients with MS, even at the early stages of 
the disease, and correlate with the cerebellar functional 
score of the expanded disability status scale (EDSS)[91]. 
Longitudinal studies have shown cerebellar GM volume 
loss and an increased number of cortical lesions in both 
CIS, RR and progressive patients[92,93].

Volumetry changes
Along with cerebral atrophy, also cerebellar volume loss 
occurs in patients with MS, at all the disease stages. 
Edwards and coworkers found reduced global cerebellar 
volumes in patients with a secondary progressive (SP) 
form when compared to RR patients, and in both groups 
when compared to healthy controls[94]. However, in a 
more recent study, when compared to healthy controls 
only MS patients with a SP form, but not RR or patients 
with benign MS, showed lower cerebellar volumes[50]. 
When cerebellar WM and GM are considered separately, 
study results are discordant. Ramasamy et al[95] found a 
reduced cerebellar WM but not GM volume in CIS and MS 
patients when compared to healthy controls. However, 
Anderson and coworkers detected a reduced cerebellar 
GM volume in RR and SP MS patients versus controls 
and only a trend of significance, when comparing WM 
volumes, between SP MS and controls[96]. In the latter 
study, cerebellar GM and WM volumes were related with 
performance at the ninehole peg test, highlighting the 
clinical relevance of measures of cerebellar volumes. A 
greater loss of GM in patients with a progressive course 
and its correlation with measures of clinical outcome are 
findings mirroring the process at the whole brain level.

Structural connectivity changes
DTI has been widely used for the study of cerebellar WM, 
in particular to evaluate the damage of the cerebellar 
peduncles and its clinical impact. Anderson et al[97] found 
reduced FA and increased radial diffusivity values in 
the middle cerebellar peduncle in patients with primary 
progressive (PP) MS; DTI metrics correlated with clinical 
impairment both of the upper and lower limbs. A study 
on a cohort of patients at different stages of the disease 
revealed greater mean, axial and radial diffusivity and 
reduced FA in MS patients, when compared to healthy 
controls, at the level of the middle and superior cerebellar 
peduncles; moreover, when compared to cerebellar 
peduncles T2 lesion load or atrophy, diffusivity measures 
better distinguished between patients with a worse EDSS 
score[98]. Disability in RR patients also correlated with the 
FA values of the cerebellar normal appearing WM[99]. 

Functional MR changes
MS is characterized by a reorganization of the functional 
connectivity. Functional MR studies with motor tasks 
revealed an increased activation in several cortical areas 
within the sensorimotor network, including the cerebellum, 
in patients when compared to healthy controls[100,101] 
(Figure 4). The altered functional cerebellar connectivity 
could represent a compensatory mechanism to WM 
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damage; accordingly, in RR MS patients a damage in 
the dentatorubrothalamic tract, assessed by means of 
DTI, was related to an increased functional connectivity 
between right sensorimotor cortex and cerebellum[101]. 
The cerebellum activation is also increased in patients with 
greater perceived fatigue where fatigue is conceived as 
a correlate of an increased resource demand for motor 
activities[102]. 

Cerebellum and cognitive impairment
Besides the classical motor clinical features associated 
with cerebellar dysfunction, lately more attention has 
been focused on the role of cerebellum in cognitive 
impairment. MS patients with cerebellar signs perform 
worse at the symbol digit modalities test (SDMT) and the 
paced auditory serial addition test (PASAT); moreover, 
the PASAT execution is predicted by cerebellar lesion 
volume[103]. In particular the posterior cerebellum has 
been implicated in cognitive processing; in MS patients, 
a reduced posterior volume predicted a worse cognitive 
performance[50]. Information processing speed impairment 
has been associated with GM atrophy of the posterior 
lobules, especially at the level of the vermis VI[104]. As with 

motor tasks, a functional reorganization could also occur 
in response to the impairment of cognitive processes. 
Recently, a greater functional connectivity of the dentate 
nucleus with frontal and parietal cortical areas was 
detected in MS patients versus controls[105,106] and the 
increased connectivity was related to a better cognitive 
performance. Moreover, an increased connectivity 
between anterior cingulate cortex and cerebellum was also 
associated with a better performance at PASAT in CIS, RR 
and SP patients versus controls and authors suggested an 
adaptive mechanism[107].

Dentate nuclei hyperintensity 
The hyperintense signal on T1weighted images at the 
level of dentate nucleus has been detected in almost 
50% of patients with a secondary progressive phase of 
the disease, in contrast to what found in the RR or PP 
form[108]. Although this change in signal could be related 
to the reduction in the number and axosomatic synapses 
in the dentate nucleus as documented by pathological 
studies[109], an association between the nuclei hyper
intensity in T1weighted images and Gadolinium rete
ntion has recently received greater attention[110].
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Figure 4  Motor training-dependent functional magnetic resonance imaging signal changes in healthy volunteers and in MS patients. Maps of training-
related functional magnetic resonance imaging signal changes are reported in healthy volunteers (indicated as controls) and in patients (Z > 2.3, P < 0.05, cluster 
corrected). Comparison between patients and controls show a higher signal reduction in the patients in regions corresponding to the secondary visual areas (V2 and 
V4) and in the cerebellum (lobule V-VI) (from Ref. [100]). V5: Visual cortex; R5: Right hemisphere; fMRI: Functional magnetic resonance imaging.
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PARKINSON’S DISEASE AND OTHER 
MOVEMENT DISORDERS
Parkinson’s disease
Parkinson’s disease (PD) is a neurodegenerative disorder 
pathologically characterized by the loss of dopaminergic 
neurons of the pars compacta of the substantia nigra; 
clinical features include motor, in particular rest tremor, 
bradykinesia and rigidity, and nonmotor symptoms. 
The role of cerebellum in the physiopathology of this 
frequent neurodegenerative disorder has received in
creasing interest. Studies on monkeys discovered direct 
anatomical connections between cerebellum and basal 
ganglia, in particular with the subthalamic nuclei and the 
striatum[8,111]. Such findings have been confirmed with a 
DTI study in humans[112]. Interestingly, patients receiving 
deep brain stimulation had a clinical benefit when the 
electrode was positioned nearby one of these basal 
gangliacerebellum connections, in particular the dentato
thalamic tract. 

Volumetry changes
Cerebellar atrophy has been documented in patients with 
PD. MRI morphometric studies have shown cerebellar 
volume loss at the level of the left cerebellum when 
compared to controls[113], and at the level of the right 
quadrangular lobe and declive in patients with tremor 
compared to those without, thus suggesting a possible 
role of cerebellum in the genesis of rest tremor[114]. A more 

recent study confirmed cerebellar GM atrophy, which 
correlated with a reduced connectivity between cerebellum 
and sensorimotor, dorsal attention and default networks 
and an increased connectivity with the frontoparietal 
network[115]. Altogether these results confirm the role of 
cerebellum in the physiopathology of motor symptoms 
in PD. Atrophy occurs since cerebellum is involved in the 
neurodegenerative pathological process of the disease, 
with the accumulation of α-sinuclein and neuronal loss.

Structural connectivity changes
DTI studies have detected decreased FA in the cerebellar 
hemispheres of patients with PD when compared to 
healthy controls (Figure 5)[63,116]. Although no differences 
in DTI parameters in superior and middle cerebellar 
peduncles have been detected between patients with 
PD and healthy subjects[63], DTI metrics of the superior 
cerebellar peduncles could be helpful in differentiating PD 
and other parkinsonism, such as progressive supranuclear 
palsy (PSP)[117].

Functional MR changes
Cerebellar hyperactivation has been showed and 
confirmed in several studies on patients with PD, both 
with akynesiarigidity subtype and with tremor subtype. 
Whether the contribution of cerebellum is mostly an 
adaptive mechanism or a primary pathologic change of 
the disease is still a matter of debate. In a restingstate 
fMRI study, Wu et al[118] observed an increased activation 
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Figure 5  Graphic representations of Fractional Anisotropy mean decrement along X (red), Y (green), and Z (blue) direction samplings of Parkinson’s disease 
patients compared to healthy subjects. Colors follow principal eigenvector’s directions (with permission of Springer, from Ref. [63]). PD: Parkinson’s disease.
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in the cerebellum in PD patients versus healthy controls; 
moreover, the altered pattern of activation was normalized 
after levodopa administration. A substitutive hyperactivity 
of the cerebellothalamocortical circuit has been proposed 
as a mechanism to compensate the hypoactivation of the 
striatothalamocortical circuit in hypokinetic patients; 
however, for PD tremor subtype, a dysfunction in the 
cerebellothalamocortical circuit has been advanced as a 
physiopathologic mechanism for rest tremor[118,119]. 

Multiple systemic atrophy
Multiple systemic atrophy (MSA) is a movement disorder, 
with a poor prognosis, which has two clinical phenotypes: 
one with a prominent akineticrigid parkinsonism 
(parkinsonian variant, MSAP) and the other with a 
progressive ataxia (cerebellar variant, MSAC). It has 
been suggested that imaging of cerebellum could be 
useful in the differential diagnosis of MSA. Atrophy of the 
middle cerebellar peduncles is frequent in patients with 
MSA and reduced volume of basal ganglia, middle and 
inferior cerebellar peduncles and pons have been found in 
the parkinsonian subtype of MSA, when compared with 
controls and PD patients[120]. Moreover, both MSAP and 
MSAC patients were found to have higher MD values in 
cerebellar hemispheres when compared to PD and PSP 
patients[121]. Brainstem and middle cerebellar peduncles 
atrophy have also been found to be very specific for the 
cerebellar subtype of MSA when compared to idiopathic 
lateonset cerebellar ataxia[122]. 

Dystonia
Dystonia is a disorder characterized by sustained and 
abnormal spontaneous muscle contractions. It can be 
classified according to the etiology (inherited or acquired) 
or the topographic distribution. Cerebellar dysfunction 
has been implicated in the physiopathology of dystonia. 
Morphological cerebellar abnormalities have been reported 
in 14% of patients with cervical or segmental dystonia[123]. 
Focal cerebellar lesions have been associated with dystonia 
and cerebellar atrophy has been described in patients with 
writer’s cramp[124]. Besides morphological studies, several 
functional studies have shown an increased activation 
in cerebellum in patients with writer’s cramp[125] and in 
patients with blepharospasm[126].

Hereditary ataxias
Ataxias are an heterogeneous group of conditions 
characterized by slowly progressive incoordination of 
gait, often associated with a reduction of coordination 
of hands, speech, and oculomotor signs[127]. Ataxias 
can be subdivided, basing on the etiology behind the 
development of the condition, in three major groups: 
acquired ataxias, nonhereditary degenerative ataxias 
and hereditary ataxias (HA), which can be further 
divided in dominant and recessive[127]. Spinocerebellar 
ataxia type 3 (SCA3) is the most frequent type of 
dominant ataxia, followed by SCA2 and SCA6, while 
Friedreich Ataxia (FRDA) and ataxiatelangiectasia 
(AT) are respectively the first and the second most 

common type of recessive ataxias, with FRDA that is, 
independently from the inheritance, the most frequent 
ataxia in terms of incidence[128].

Volumetry changes
Atrophy of the cerebellar cortex is not a distinguish 
feature of all the HA. Different patterns of atrophy can 
be identified, depending on the degree of cerebellar 
atrophy and the involvement of midbrain structures. 
In particular, SCA3 and SCA2 are characterized by the 
presence of cortical, cerebellar and pons atrophy[129]. On 
the other hand, SCA6 shows a pattern of pure cortical 
cerebellar atrophy, with a relative sparing of midbrain 
structures[130]. With regard to recessive ataxias, FRDA 
is characterized by a prominent spinal cord atrophy[131] 
compared to cerebellar cortical structures[132], with 
atrophy that, when significant, affects mainly the lateral 
cerebellar hemispheres[133]. Finally, AT is characterized 
by superior cerebellar hemispheres atrophy, in particular 
of the vermis, which appears hypoplastic in its inferior 
portion[134137].

Structural connectivity changes
Unlike volumetric measures, almost all the major 
HA show similar microstructural changes affecting 
infratentorial WM tracts. Indeed, SCA3 patients showed 
a significant FA reduction in different cerebellar areas, 
including both anterior and posterior cerebellar lobes, 
nodule, culmen, dentate, fastigial, lingual, and all 
three cerebellar peduncles, as well as in pons and 
midbrain[138]. These abnormalities were correlated with 
clinical variables, such as scale for the assessment and 
rating of ataxia (SARA) scores or disease duration[138,139]. 
In SCA2, significant microstructural changes were 
present in cerebellar WM, brainstem and cerebellar 
peduncle[140,141], with changes in the mode of anisotropy 
that were lower in SCA2 patients compared to healthy 
controls in a longitudinal evaluation[141]. Unlike in SCA3, 
no correlation with clinical variables emerged for these 
infratentorial clusters of microstructural changes in 
SCA2. In FRDA, microstructural changes were found 
to affect predominantly cerebellar peduncles[142145], as 
well as cerebellar hemispheres and vermis[144] and to 
be associated with clinical disability[142144]. Finally, in AT 
patients a reduction of mean diffusivity was reported 
within cerebellar peduncle regions[146] (Figure 6). 

Functional MR changes
Similar to structural connectivity, functional connectivity 
changes are present in almost all HA. However, these 
modifications are not limited to a somehow expected 
reduction of FC in HA patients compared to healthy 
controls, but also increase in FC are reported in some HA, 
probably due to compensatory phenomena, reflecting the 
known heterogeneity of this group of conditions. Indeed, 
a significant increase of activation of the ventral part of 
the dentate nuclei, but not of the cerebellar cortex, was 
found during an handmovement task fMRI experiment in 
SCA3 patients compared to healthy controls, suggesting a 
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compensatory phenomenon of the cerebrocerebellum to a 
prominent damage of the spinocerebellum[147]. Moreover, a 
recent fMRI study, involving a bilateral audiopaced thumb 
movements paradigm, showed a diminished movement 
synchronization in SCA3 patients[148] that would suggest 
the presence of functional reorganization of the motor 
network and a potential role of fMRI as a tool to monitor 
the disease[148]. In SCA2, a seedbased fMRI analysis 
showed a decreased putaminal connection with the pons, 
together with a decreased connectivity between the rostral 
sensorimotor area and both cerebellum and pons[149]. 
Furthermore, a decrease of the functional connectivity of 
the cerebellar components of the default mode, executive 
and right frontoparietal networks was described in SCA2, 
unrelated to the cortical gray matter volume loss[150], 
with some authors that showed a significant correlation 
between both motor and neuropsychological scores and 
the abnormal cerebellar functional connectivity strength[151]. 
In SCA6 patients, a significantly higher activation at the 
level of the lobules V and VI, as well as in the dentate 

nuclei, was detected compared to controls when 
performing a handmovement task fMRI experiment[147]. 
Likewise, in FRDA patients the same motor task showed 
a higher activation mainly prominent at the level of 
lobules V and VI and dentate nuclei, compared to healthy 
control[147]. Furthermore, a working memory task fMRI 
experiment showed that FRDA patients had a decrease 
functional connectivity between cerebellum and prefrontal 
areas, with a correlation between disease severity and 
cerebellar dysfunction[152]. 

Alzheimer’s disease
Alzheimer’s disease (AD) is the most common cause of 
dementia and it is preceded by a predementia phase, 
called mild cognitive impairment (MCI), characterized by 
a deficit in one or more cognitive domains. The role of 
cerebellum involvement in AD is controversial. While a 
volumetric MRI study in patients with AD, MCI and healthy 
controls found a volume loss at the level of the posterior 
cerebellar lobes in AD patients compared to healthy 

Control

Patient

CST                                      Somato                                   CPC                                         CTC

Figure 6  Somatosensory motor tracts in a representative control and ataxia telangiectasia (A-T) subject (age 23). Control tracts are displayed in the first and 
second rows comprising the left sagittal (first row) tracts, left and right coronal (second row) corticospinal (CST) and somatosensory tracts, and left coronal (second 
row) cortico-ponto-cerebellar (CPC) and cerebellar-thalamo-cortical (CTC) tracts. Patient tracts are displayed in the third and fourth rows comprising the left sagittal (third 
row) tracts, left and right coronal (fourth row) CST and somatosensory tracts, and left coronal (fourth row) CPC and CTC tracts. Tract colors are based on the direction 
of water diffusion (Blue: Ascending–descending diffusion; Red: Left–right diffusion; Green: Anterior–posterior diffusion). Compared to motor pathways in age matched 
controls, A-T CST and somatosensory pathways display a morphological thinning of tracts at the level of the thalamus in the coronal view. In addition, A–T CPC and 
CTC pathways display morphological thinning of tracts in the cerebellum at the position of the medial cerebellar peduncles (from Ref. [147]).
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controls, no significant differences were showed between 
patients with MCI and healthy controls[153]. Another study 
detected a regional GM atrophy in cerebellar lobule VI in 
patients with AD[154] (Figure 7). These findings were not 
confirmed[155] in a more recent study, suggesting that 
the decrease of cerebellar volume could be influenced 
by the patients’ age. This is supported by the findings 
of cerebellar atrophy in patients with a lateonset, but 
not earlyonset AD[156] and by the presence of cerebellar 
atrophy in cognitively preserved old subjects[157].

CONCLUSION
The cerebellum plays a key role in the control of motor 
and cognitive functions due to the multiple connections to 
the forebrain, the thalamus, and the spinal cord. However, 
the cerebellar complex anatomical structure and its 

location in the posterior fossa represent a challenge for in 
vivo structural and cerebellar neuroimaging. The recent 
advancement in MRI hardware and software and the 
development of more accurate and robust algorithms for 
image analysis have improved the structural and functional 
assessment of the cerebellum. This is of paramount 
importance due to the frequent and early involvement of 
the cerebellum in several neurodegenerative diseases. 
Therefore, MRI measures of cerebellar structure and 
function could serve as early and sensitive marker of 
disease progression and help monitor response to current 
or experimental treatments.
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